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COMMUTATIVITY FOR THE WEAKLY RIGHT CANCELLATIVE
SEMIRINGS: AN ENTIRELY NOVEL CATEGORY OF SEMIRINGS
AND A WEAK CONDITION FOR COMMUTATIVITY RESEARCH

K. Charrabi*, A. Mamouni and B. Nejjar

ABSTRACT. The goal of this study is to provide an innovation for commutativity
research that is less than the strong condition prime ring. This paper will describe
weakly right cancellative semirings and examine how commutativity and generalized
derivations apply to this class of semirings. A detailed explanation and classification
of some of these generalized derivations are also included.

1. INTRODUCTION

A semiring is an algebraic structure consisting of a non-empty set S pro-
vided with two binary operations, called addition (which is commutative and
usually denoted by +) and multiplication (usually denoted by -) such that
the following conditions hold:

(1) (S,+) and (S, -) are semigroups;

(2) multiplication distributes over addition from either side.

Recall that a semiring is said to be commutative if (5, -) is commutative. If
there exists a neutral element 0 € (S, +) (resp. e € (5,-)) it is called the zero
of (S,4) (resp. the identity of (S,-)). Additionally, if -0 =0-a = 0 for
all a € S, then S is called a semiring with absorbing zero. In other words,
semirings with absorbing zero are just rings without subtraction. Nontrivial
examples of semirings first appeared in the work of Richard Dedekind [5] in
1894, in connection with the algebra of ideals of a commutative ring (one
can add and multiply ideals, but one cannot subtract them). Nevertheless,
the formal definition of semirings was introduced by H. S. Vandiver in 1934
and has since then been studied by many authors. Semirings constitute a
fairly natural generalization of rings and distributive lattices, with broad ap-
plications in different areas of mathematics such as combinatorics, functional
analysis, topology, graph theory, ring theory including partial ordered rings,
optimization theory, automata theory, formal language theory, coding theory
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and the mathematical modeling of quantum physics and parallel computing
systems. The basic reference for semirings is [7]. Other valuable results on
the structure of semirings are contained in [13] and [16].

It is well known that a semiring’s zero need not be absorbing and could even
coincide with the identity of S (cf., for example, reference [15]). When for all
a€ S, b+a=c+a(resp. a+b=a+c) gives b = ¢, then the element a is
said to be additively right (resp. left) cancellable. A semiring S is said to be
additively right (or left) cancellative if all a in S are additively right (or left)
cancellable in S. It is stated that S is additively cancellative if and only if it
is additively right and left cancellative.

A nonzero element a of S is multiplicatively left cancellable if ab = ac
implies b = ¢. A semiring S is considered multiplicatively left cancellative
(MLC) when all of its nonzero elements are multiplycatively left cancellable
in S.

A left (resp. right) ideal of a semiring S is non-empty subset I of S such
that © +y € [ for all x,y € I and sx € I (resp. xs € I) for all z € I and
s € S. An ideal of a semiring S is a non-empty subset I of S such that [
is both a left and right ideal of S. An additive mapping d : S — S is a
derivation on S if d(xy) = d(z)y + xd(y) for all ,y € S. On the other hand,
a generalized derivation (F)d) is an additive mapping F' : S — S such that
F(zy) = F(x)y + xd(y) for all z,y € S. A semiring S is said to be 2-torsion
free if whenever 2z = 0 for every x € S implies x = 0. The recent literature
contains various results which indicate how the global structure of a ring S is
often tightly connected to the behaviour of additive mappings defined on S.
Recently many authors have studied commutativity in prime and semiprime
rings admitting suitably constrained derivations acting on appropriate sub-
sets of the rings. Moreover, several authors have proved comparable results
on semirings (for example, see [1, 5, 8, 10, 12]).

Recently, V. DE Filipis, A. Mamouni and L. Oukhtite in [0] defined a
new class of semiring which called weakly left cancellative (WLC) semirings
and they have studied the connection between commutativity of this class of
semirings and derivations. In particular, they proved that, if S is a WLC
semiring, I is a nonzero ideal of S and d is a derivation of S such that
d(zy) = d(yz) for all z,y € I, or d(zy) + yr = d(yx) + xy for all z,y € I, or
d(z)r = zd(x) for all x € I, then S is commutative.

Motivated by the previous results, in the present paper, we introduce the
notion of weakly right cancellative (WRC) semirings and we will study the
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commutativity of a WRC semiring with a generalized derivation F' that ful-
fills certain algebraic properties on an ideal of S. Added to that, we will
give a complete description and classification for some of these generalized
derivations.

2. MAIN RESULTS

In the current article, the semiring refers to an additively cancellative semir-
ing. We are going to denote the center of S by
Z(S)={z€S:z2x =21z VreS},
the commutator zy —yx is denoted as [z, y|, while the Jordan product zy+yx
is written as x o y for every z,y € S.
Based on the concept of right cancellative semirings, we introduce the no-
tion of weakly right cancellative semirings:

Definition 2.1. A semiring S is said to be weakly right cancellative (WRC)
if axb = cxb for all x € S, implies either a = ¢ or b = 0.

In broad terms, any right cancellative semiring is WRC, but the converse
is not guaranteed in general.

Example 2.2. Let S = CCL Z > la, b, c,d € N p where N is the set of pos-

itive integers including 0. It doesn’t take much to prove that S is not a right
cancellative semiring. Let M, N, N' € S such that M # 0, then the relation
NAM = N'AM forces N = N’ for all A € S and therefore S is a WRC
semiring.

The following facts are going to be referenced periodically during the proofs.
Let S be a WRC semiring and I an ideal of 5"
Fact 1. If axb = cxb for all x € I, then a = c or b = 0.

Fact 2. It I is commutative, then S is commutative. In particular, if xy = yx
for all y € I then z € Z(95).

Fact 3. If S admits a derivation d such that d(I) = (0), then d = 0.
Fact 4. If S admits a generalized derivation F' such that F'(I) = (0), then
F=0.

Proposition 2.3. Let F' be an arbitrary additive mapping of S and d a
derivation of S. Then F(xy) = F(x)y + xd(y) for all x,y € S if and only
if F(xy) = xd(y) + F(x)y for all x,y € S. Therefore F is a generalized
derivation if and only if F(xy) = xd(y) + F(z)y.
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Proof. Given that F(zy) = F(x)y + xd(y) for all z,y € S. Taking into
account z(y + y) = xy + xy, we have

F(z(y+y)) = F(@)(y+y) +adly +y) = Fla)y + F(x)y + zd(y) + zd(y)
On the other hand
F(zy + zy) = F(zy) + F(zy) = F(z)y + zd(y) + F(z)y + zd(y)
Subsequently, F(x)y + zd(y) = zd(y) + F(z)y, so F(zy) = zd(y) + F(z)y.
Similar proof confirms the reverse. H

Lemma 2.4. Let S be a 2-torsion free WRC semiring and I be a nonzero
ideal of S. If S admits a derivation d such that d*(z) = 0, for all x € I, then
d=0.

Proof. Let’s say d?(x) = 0, for all z € I. Replacing x by xy, we get
d*(zy) = 0 = d*(x)y + 2d(x)d(y) + zd*(y)

for all x,y € I. Yet according to the hypothesis, d?(z) = 0 = d*(y). That is
why for any x,y € I, we have 2d(z)d(y) = 0. Knowing that S is 2-torsion free,
we conclude d(z)d(y) = 0. After changing y by yz, we attain d(x)yd(z) = 0
for every x,y, z € I. In particular, for all 1,z € I, d(x1)yd(z) = d(z2)yd(2).
Since S is WRC it follows that d(z) = 0 or d(x1) = d(x2) for all x1, x5,z € I.
Initially, we go with d(x1) = d(x3), which means d(x; + z3) = d(x2). Thus,
d(x1) = 0 for every x; € I. Hence in both cases, we arrive at d(x) = 0 for all
x € I, so through Fact 3 we derive that d = 0. [

A number of researchers in the field of commutativity research anticipate
that the prime ring condition is strong. As a result, we will present some
commutativity requirements in the case of weakly right cancellative semirings
(WRC) as a weak condition for commutativity.

Theorem 2.5. Let S be a WRC' semiring and I a nonzero ideal of S. If S
admits a nonzero generalized derivation F with associated derivation d such

that F(xy) = F(yx) for all z,y € I, then S is commutative.
Proof. Consider that
F(zy) = F(yz) forall z,y € l. (2.1)
Substituting y by yz in (2.1), we acquire
F(zy)x + xyd(z) = F(yx)x + yxd(z) for all x,y € I. (2.2)
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By correctly multiplying equation (2.1) by x and comparing the result with
equation (2.2), we earn
zyd(x) = yxd(x) forall x,y € I. (2.3)
When zy is used rather than y in (2.3), we detect that
xzyd(x) = zoyd(x) for all z,y,z € 1. (2.4)

Knowing that S is WRC, equation (2.4) together with Facts 1 and 2, gives rise
toxz € Z(S) or d(z) =0 for all x € I. Let xy € I such that d(zg) = 0, for all
x1 € Z(9S) with d(z1) # 0, we have d(zo+x1) = d(xo) +d(x1) = d(z1) # 0. It
turns out that x; +z9 € Z(5). Thus, we obtain (xg+z1)z = z(x¢+ 1) for all
z € S. Which implies xgz+z12 = zx¢g+22; for all z € S. Since 1 € Z(S), we
find z9z = zz( for all z € S and therefore zy € Z(S). Subsquently, I C Z(.5)
and Fact 2 implies that S is commutative. [

Every prime ring R is trivially a WRC zero-absorbing semiring. As an
outcome of the Theorem 2.5, we get the following Corollary:

Corollary 2.6. ([3], Theorem 3) Let R be a prime ring and U two-sided ideal
of R. If R admits a nonzero derivation d such that d(xy) = d(yx) for all
x,y € U, then R is commutative.

Theorem 2.7. Let S be a WRC semiring and I a nonzero ideal of S. If S

admits a nonzero generalized derivation F with associated nonzero derivation
d such that F(xy)+yx = F(yz)+xy for all x,y € I, then S is commutative.

Proof. Given that
F(ry) +yr = F(yx) +xy forall z,y € I. (2.5)
Replacing y by yx in (2.5) and using Proposition 2.3, we find that
zyd(z) + (F(zvy) + yzr)r = yad(x) + (F(yz) + 2y)x for all z,y € I. (2.6)
In view of equation (2.5), we see that
ryd(z) = yxd(x) for all z,y € I. (2.7)

By inserting zy for y in (2.7) and applying it, we obtain zzyd(x) = zzyd(x)
for all z,y, 2 € I. With regard to the fact that S is WRC, the last expression
used alongside Fact 1 leads to z € Z(S) or d(z) = 0 for all x € I. Now, using
the same arguments as used in the end of the proof of Theorem 2.5, we get
the required result. ]

An identical reasoning as above can be used to proof the following result.
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Theorem 2.8. Let S be a WRC semiring and I a nonzero ideal of S. If S
admits a nonzero generalized derivation F with associated nonzero derivation

d such that F(xy)+xy = F(yz)+yx for all x,y € I, then S is commutative.

As a consequence of applying Theorem 2.7 and Theorem 2.8, we acquire
the following corollaries:

Corollary 2.9. ([11], Theorem 2.1) Let R be a prime ring and I a nonzero
ideal of R. If R admits a generalized derivation F' associated with a nonzero
derivation d such that F([x,y]) = [x,y] for all x,y € I, then R is commuta-
tive.

Corollary 2.10. ([11], Theorem 2.2) Let R be a prime ring and I a nonzero
ideal of R. If R admits a generalized derivation F associated with a nonzero
derivation d such that F([x,y]) + [z,y] = 0 for all x,y € I, then R is
commutative.

Theorem 2.11. Let S be a WRC' semiring and I a nonzero ideal of S. If S
admits a nonzero generalized derivation F with associated nonzero derivation
d such that F(z)x = xF(z) for all x € I, then S is commutative.

Proof. By hypothesis, we have
F(z)x = xF(z) forall x €. (2.8)
Taking = x 4+ y in equation (2.8) and applying it, we see that
F(x)y+ F(y)r = «F(y) + yF(x) forall z,y el (2.9)

Substituting yz for y in (2.9) and using the fact that F(z)r = xF(z), one
can acquire

F(x)yx + F(y)2® + yd(z)x = vF(y)x + vyd(x) + yF(x)z for all z,y € I.
(2.10)
When we right multiply (2.9) by = and compare it to (2.10), we are given

F(y)r +yF(z)r +yd(z)r = 2F(y)r + zyd(x) + yF(x)x for all z,y € 1.
(2.11)
Which means

yF(x)r +yd(z)r = xyd(x) + yF(x)xr for all x,y € I. (2.12)
By replacing y with ry in equation (2.12), we arrive at

ryF(z)x + ryd(z)r = xryd(x) + ryF(x)x for all x,y,r € I. (2.13)
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Left multiplying (2.12) by r and merging with (2.13), one can obtain
reyd(z) + ryF(v)e = xryd(x) + ryF(x)z for all z,y,r € I. (2.14)
Hence
xzryd(z) = reyd(x) for all x,y,r € I, (2.15)

Based on the fact that S is WRC, then equation (2.15) together with Fact 1
imply that © € Z(S) or d(x) = 0 for all = € I. Following the same reasons as
in the end of the proof of the Theorem 2.5, we obtain the required result. [

While every prime ring R is a WRC zero-absorbing semiring, the following
Corollary is an application of Theorem 2.11.

Corollary 2.12. ([9], Theorem 3) Let R be a 2-torsion free prime ring and J
be a nonzero Jordan ideal. If R admils a generalized derivation F' such that
[F(u),u] =0 for allu € J, then F is a left multiplier or R is commutative.

Theorem 2.13. Let S be a 2-torsion free WRC' semiring and I a nonzero

ideal of S. If S admits a nonzero generalized derivation F' associated with a
nonzero derivation d such that F(x)d(y) = d(y)F(x) for all x,y € I, then S
18 commutative.

Proof. Make the assumption that
F(z)d(y) =d(y)F(x) forall z,y € 1.
Writing yu instead of y in the preceding expression, we obtain
F(z)d(y)u+F(x)yd(u) = d(y)uF(x)+yF(z)d(u) forall z,y,u e I. (2.16)
Putting © = ud(z) in (2.16), we acquire
P(@)d(y)ud(=) + F(@)yd(u)d(z) + F(z)yud?(z)
= d(y)uF(z)d(z) + yF(x)d(u)d(z) + yF(x)ud*(2).
Right multiplying (2.16) by d(z), one can arrive to
F(z)d(y)ud(z) + F(z)yd(u)d(z) = d(y)uF (x)d(z) + yF(z)d(u)d(z). (2.18)
Invoking (2.18),(2.17), yields
F(z)d(y)ud(z) + F(z)yd(u)d(z) + F(z)yud®(z)
= F(2)d(y)ud(z) + F(x)yd(u)d(z) + yF(x)ud*(2).

(2.17)

(2.19)

Hence
F(z)yud®(z) = yF(x)ud*(z) for all x,y,u,z € I. (2.20)
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While S is WRC, equation (2.20) and Fact 1 ensure that d*(z) = 0 or
F(x)y = yF(x) for all x,y,z in I. First we suppose that d*(z) = 0 for
all z € I, then by Lemma 2.4, we get d = 0, a contradiction. Subsequently,
F(x)y = yF(zx) for all x,y € I, after taking y = z, we find F(x)x = xF(x)
for all x € I. Accordingly, by Theorem 2.8 S is commutative. [

Any prime ring R is a WRC zero-absorbing semiring. Applying Theorem
2.13, we get the following Corollary:

Corollary 2.14. ([2], Theorem 2.6) Let R be a prime ring. If R admits
a nonzero generalized derivation F associated with a derivation d such that
[F(z),d(y)] =0 for all x,y € R, then R is commutative.

3. THE CATEGORIZATION OF SOME GENERALIZED DERIVATIONS

In the following section, we are going to offer an overview and categorization
of several generalized derivations that satisfy specific algebraic characteristics.

Theorem 3.1. Let S be a 2-torsion free WRC semiring and let I be a nonzero

ideal of S. If S admits a generalized derivation F' with associated derivation
d such that F(zoy) =0 for all x,y € I, then F = 0.

Proof. Consider there is a nonzero generalized derivation F' such that
F(zxoy) =0 for all z,y € I, thus

F(zy) + F(yz) =0 forall z,y € I. (3.1)
Once, we replace y by yz in equation (3.1), we acquire
zyd(x) + F(zy)r + F(yx)xr + yrd(z) =0 for all z,y € 1. (3.2)
Applying (3.1), the previously equation gives
xyd(z) + yrd(x) =0 for all z,y € I. (3.3)
Substituting zy for y in (3.3), we obtain
zrzyd(z) + zyxd(x) =0 for all z,y,z € I. (3.4)
Left multiplying equation (3.3) by z and comparing with (3.4), to get
zrzyd(x) = zaeyd(z) for all x,y,z €l (3.5)

In light of Fact 1, equation (3.5) implies that x € Z(5) or d(z) = 0 for all
x € I. Through the same methods as in Theorem 2.5, we could see that S
is commutative. In view of commutativity and equation (3.1), it follows that
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F(zy)+ F(yx) = 2F(xy) = 0 for all 2,y € I. By the 2-torsion freeness of S,
we arrive at

F(zy) =0 forall z,y € I. (3.6)
Changing y to yz allows us to attain
F(zy)z + zyd(z) =0 forall z,y,z € I. (3.7)
Which leads to
zyd(z) =0 forall z,y € I. (3.8)
Specifically, for any y € I, zyd(z) = Oyd(z). While S is WRC and I # {0},
the above expression gives that d(z) = 0 for any z € I. Consequently,

d(I) = 0 and Fact 3 assures that d = 0. On the other hand equation (3.6)
becomes F'(x)y = 0 for all z,y € I. Now, replace y by yz and apply the
commutativity of S to attain yzF(z) = 0 = 0zF(z) for all z € I. Given
that I # {0}, by utilizing Fact 1, we achieve that F(z) = 0 for all z € I.
Consequently, F/(I) = (0) and Fact 4 forces that F' = 0. [

Theorem 3.2. Let S be a 2-torsion free WRC semiring and let I be a nonzero
tdeal of S. If S admits a generalized derivation I with associated derivation
d such that F(zoy) =x oy for all x,y € I, then F = id.

Proof. We are given that
F(roy)=xzoy forall z,y € I. (3.9)

In equation (3.9), update y with yx and use the fact that z o (yz) = (xoy)x
to achieve

F(xoy)x+ (xoy)d(x) = (xoy)r forall z,y € l. (3.10)
Making use the last equation with equation (3.9), we obtain
(xoy)d(x) =0 forall xz,y € I. (3.11)

Hence
zyd(z) + yxd(x) =0 forall x,y € I. (3.12)

While equation (3.12) is identical to equation (3.3), then reasoning as in the
proof of Theorem 2.13, we could demonstrate that S is commutative and
d = 0. In addition, equation (3.9) can be rewritten as

F(zy)+ F(yz) = 2y + yx
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for all x,y € [I. Based on the commutativity of S, it follows that
2F (xy) = 2zy for all z,y € I. While S is 2-torsion free and d = 0, we
attain

F(z)y=xzy forall x,y € l. (3.13)

Modifying y by zy in (3.13), we acquire
F(x)zy =xzy forall z,y,z € I. (3.14)
For the reason that I # {0}, equation (3.14) in combination with Fact 1 lead
us to F'(z) =z for all x € I, which assures that F' = id. O

Theorem 3.3. Let S be a 2-torsion free WRC semiring and let I be a nonzero
ideal of S. If S admits a generalized derivation F' with associated derivation
d such that F(zoy)+xoy =0 forall z,y € I, then F +id = 0.

Proof. Suppose that
Fxoy)+xoy=0 forall z,ye€l. (3.15)

If we substitute y by yz in (3.15) and applying the fact that zo(yx) = (zoy)z,
we are able to derive (zoy)d(x) + (F(xoy)+xoy)r=0forall x,y € I. In
view of equation (3.15) together with the previous expression, one could see
that

zyd(z) +yxd(x) =0 forall z,y € 1. (3.16)

Knowing that equation (3.16) is identical in form to equation (3.3), then
following the same logic as in the proof of the theorem 2.13, we can draw that
S is commutative and d = 0. Accordingly, equation (3.15) can be rewritten
as F(zxy)+ F(yx) +xy+yx = 0 for all x,y € I. Furthermore, commutativity
of S shows that 2(F(zy) + xy) = 0 for all x,y € I. Because of 2-torsion
freeness, we get F'(zy) + zy = 0 and while d = 0, we are able to see that

Fx)y+axy=0 forall z,yel. (3.17)

By changing y to zy in (3.17) as well as applying the commutativity of .S, we
achieve

yz(F(z)+x) =0=0z(F(x) +x) forall x,y,z€I. (3.18)
Given that I # {0}, equation (3.18) combined with Fact 1 gives F(z)+z =0
for all z € I. Consequently, '+ id = 0. ]

The following example demonstrate how in some cases our findings do not
hold. In reality, we might conclude from the following example that the
condition WRC-semiring must be fulfilled.
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Example 3.4. Let

where N is the set of positive integers including 0. If we define the maps F
and d on the set S given by

0 a b 0 0 c
F 0 0 ¢ =100 0|,
00O 000
and
0 a b 00 ¢
d 0 0 ¢ =1 000
00O 000

F' is a nonzero generalized derivation associated with d of S that satisfies the
conditions of Theorems 2.5, 2.7, 2.8 and 2.13. But S is not commutative.
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