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COMMUTATIVITY FOR THE WEAKLY RIGHT CANCELLATIVE
SEMIRINGS: AN ENTIRELY NOVEL CATEGORY OF SEMIRINGS
AND A WEAK CONDITION FOR COMMUTATIVITY RESEARCH

K. Charrabi∗, A. Mamouni and B. Nejjar

Abstract. The goal of this study is to provide an innovation for commutativity
research that is less than the strong condition prime ring. This paper will describe
weakly right cancellative semirings and examine how commutativity and generalized
derivations apply to this class of semirings. A detailed explanation and classification
of some of these generalized derivations are also included.

1. Introduction
A semiring is an algebraic structure consisting of a non-empty set S pro-

vided with two binary operations, called addition (which is commutative and
usually denoted by +) and multiplication (usually denoted by ·) such that
the following conditions hold:

(1) (S,+) and (S, ·) are semigroups;
(2) multiplication distributes over addition from either side.

Recall that a semiring is said to be commutative if (S, ·) is commutative. If
there exists a neutral element 0 ∈ (S,+) (resp. e ∈ (S, ·)) it is called the zero
of (S,+) (resp. the identity of (S, ·)). Additionally, if a · 0 = 0 · a = 0 for
all a ∈ S, then S is called a semiring with absorbing zero. In other words,
semirings with absorbing zero are just rings without subtraction. Nontrivial
examples of semirings first appeared in the work of Richard Dedekind [5] in
1894, in connection with the algebra of ideals of a commutative ring (one
can add and multiply ideals, but one cannot subtract them). Nevertheless,
the formal definition of semirings was introduced by H. S. Vandiver in 1934
and has since then been studied by many authors. Semirings constitute a
fairly natural generalization of rings and distributive lattices, with broad ap-
plications in different areas of mathematics such as combinatorics, functional
analysis, topology, graph theory, ring theory including partial ordered rings,
optimization theory, automata theory, formal language theory, coding theory
MSC(2020): Primary: 16Y60; Secondary: 16W25, 16U80.
Keywords: Semiring; Cancellative semiring; Derivation; Generalized derivation.
Received: 21 October 2023, Accepted: 24 May 2024.
∗Corresponding author.

197



198 CHARRABI, MAMOUNI AND NEJJAR

and the mathematical modeling of quantum physics and parallel computing
systems. The basic reference for semirings is [7]. Other valuable results on
the structure of semirings are contained in [13] and [16].
It is well known that a semiring’s zero need not be absorbing and could even
coincide with the identity of S (cf., for example, reference [15]). When for all
a ∈ S, b + a = c + a (resp. a + b = a + c) gives b = c, then the element a is
said to be additively right (resp. left) cancellable. A semiring S is said to be
additively right (or left) cancellative if all a in S are additively right (or left)
cancellable in S. It is stated that S is additively cancellative if and only if it
is additively right and left cancellative.

A nonzero element a of S is multiplicatively left cancellable if ab = ac
implies b = c. A semiring S is considered multiplicatively left cancellative
(MLC) when all of its nonzero elements are multiplycatively left cancellable
in S.

A left (resp. right) ideal of a semiring S is non-empty subset I of S such
that x + y ∈ I for all x, y ∈ I and sx ∈ I (resp. xs ∈ I) for all x ∈ I and
s ∈ S. An ideal of a semiring S is a non-empty subset I of S such that I
is both a left and right ideal of S. An additive mapping d : S −→ S is a
derivation on S if d(xy) = d(x)y+ xd(y) for all x, y ∈ S. On the other hand,
a generalized derivation (F, d) is an additive mapping F : S −→ S such that
F (xy) = F (x)y + xd(y) for all x, y ∈ S. A semiring S is said to be 2-torsion
free if whenever 2x = 0 for every x ∈ S implies x = 0. The recent literature
contains various results which indicate how the global structure of a ring S is
often tightly connected to the behaviour of additive mappings defined on S.
Recently many authors have studied commutativity in prime and semiprime
rings admitting suitably constrained derivations acting on appropriate sub-
sets of the rings. Moreover, several authors have proved comparable results
on semirings (for example, see [1, 5, 8, 10, 12]).

Recently, V. DE Filipis, A. Mamouni and L. Oukhtite in [6] defined a
new class of semiring which called weakly left cancellative (WLC) semirings
and they have studied the connection between commutativity of this class of
semirings and derivations. In particular, they proved that, if S is a WLC
semiring, I is a nonzero ideal of S and d is a derivation of S such that
d(xy) = d(yx) for all x, y ∈ I, or d(xy) + yx = d(yx) + xy for all x, y ∈ I, or
d(x)x = xd(x) for all x ∈ I, then S is commutative.

Motivated by the previous results, in the present paper, we introduce the
notion of weakly right cancellative (WRC) semirings and we will study the
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commutativity of a WRC semiring with a generalized derivation F that ful-
fills certain algebraic properties on an ideal of S. Added to that, we will
give a complete description and classification for some of these generalized
derivations.

2. Main results
In the current article, the semiring refers to an additively cancellative semir-

ing. We are going to denote the center of S by
Z(S) = {z ∈ S : zx = xz, ∀x ∈ S},

the commutator xy−yx is denoted as [x, y], while the Jordan product xy+yx
is written as x ◦ y for every x, y ∈ S.

Based on the concept of right cancellative semirings, we introduce the no-
tion of weakly right cancellative semirings:
Definition 2.1. A semiring S is said to be weakly right cancellative (WRC)
if axb = cxb for all x ∈ S, implies either a = c or b = 0.

In broad terms, any right cancellative semiring is WRC, but the converse
is not guaranteed in general.

Example 2.2. Let S =

{(
a b
c d

)
|a, b, c, d ∈ N

}
where N is the set of pos-

itive integers including 0. It doesn’t take much to prove that S is not a right
cancellative semiring. Let M,N,N ′ ∈ S such that M ̸= 0, then the relation
NAM = N ′AM forces N = N ′ for all A ∈ S and therefore S is a WRC
semiring.

The following facts are going to be referenced periodically during the proofs.
Let S be a WRC semiring and I an ideal of S:
Fact 1. If axb = cxb for all x ∈ I, then a = c or b = 0.

Fact 2. If I is commutative, then S is commutative. In particular, if xy = yx
for all y ∈ I then x ∈ Z(S).
Fact 3. If S admits a derivation d such that d(I) = (0), then d = 0.
Fact 4. If S admits a generalized derivation F such that F (I) = (0), then
F = 0.
Proposition 2.3. Let F be an arbitrary additive mapping of S and d a
derivation of S. Then F (xy) = F (x)y + xd(y) for all x, y ∈ S if and only
if F (xy) = xd(y) + F (x)y for all x, y ∈ S. Therefore F is a generalized
derivation if and only if F (xy) = xd(y) + F (x)y.
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Proof. Given that F (xy) = F (x)y + xd(y) for all x, y ∈ S. Taking into
account x(y + y) = xy + xy, we have

F (x(y + y)) = F (x)(y + y) + xd(y + y) = F (x)y + F (x)y + xd(y) + xd(y)

On the other hand

F (xy + xy) = F (xy) + F (xy) = F (x)y + xd(y) + F (x)y + xd(y)

Subsequently, F (x)y + xd(y) = xd(y) + F (x)y, so F (xy) = xd(y) + F (x)y.
Similar proof confirms the reverse. □

Lemma 2.4. Let S be a 2-torsion free WRC semiring and I be a nonzero
ideal of S. If S admits a derivation d such that d2(x) = 0, for all x ∈ I, then
d = 0.

Proof. Let’s say d2(x) = 0, for all x ∈ I. Replacing x by xy, we get

d2(xy) = 0 = d2(x)y + 2d(x)d(y) + xd2(y)

for all x, y ∈ I. Yet according to the hypothesis, d2(x) = 0 = d2(y). That is
why for any x, y ∈ I, we have 2d(x)d(y) = 0. Knowing that S is 2-torsion free,
we conclude d(x)d(y) = 0. After changing y by yz, we attain d(x)yd(z) = 0
for every x, y, z ∈ I. In particular, for all x1, x2 ∈ I, d(x1)yd(z) = d(x2)yd(z).
Since S is WRC it follows that d(z) = 0 or d(x1) = d(x2) for all x1, x2, z ∈ I.
Initially, we go with d(x1) = d(x2), which means d(x1 + x2) = d(x2). Thus,
d(x1) = 0 for every x1 ∈ I. Hence in both cases, we arrive at d(x) = 0 for all
x ∈ I, so through Fact 3 we derive that d = 0. □

A number of researchers in the field of commutativity research anticipate
that the prime ring condition is strong. As a result, we will present some
commutativity requirements in the case of weakly right cancellative semirings
(WRC) as a weak condition for commutativity.

Theorem 2.5. Let S be a WRC semiring and I a nonzero ideal of S. If S
admits a nonzero generalized derivation F with associated derivation d such
that F (xy) = F (yx) for all x, y ∈ I, then S is commutative.

Proof. Consider that

F (xy) = F (yx) for all x, y ∈ I. (2.1)

Substituting y by yx in (2.1), we acquire

F (xy)x+ xyd(x) = F (yx)x+ yxd(x) for all x, y ∈ I. (2.2)
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By correctly multiplying equation (2.1) by x and comparing the result with
equation (2.2), we earn

xyd(x) = yxd(x) for all x, y ∈ I. (2.3)
When zy is used rather than y in (2.3), we detect that

xzyd(x) = zxyd(x) for all x, y, z ∈ I. (2.4)
Knowing that S is WRC, equation (2.4) together with Facts 1 and 2, gives rise
to x ∈ Z(S) or d(x) = 0 for all x ∈ I. Let x0 ∈ I such that d(x0) = 0, for all
x1 ∈ Z(S) with d(x1) ̸= 0, we have d(x0+x1) = d(x0)+d(x1) = d(x1) ̸= 0. It
turns out that x1+x0 ∈ Z(S). Thus, we obtain (x0+x1)z = z(x0+x1) for all
z ∈ S. Which implies x0z+x1z = zx0+zx1 for all z ∈ S. Since x1 ∈ Z(S), we
find x0z = zx0 for all z ∈ S and therefore x0 ∈ Z(S). Subsquently, I ⊆ Z(S)
and Fact 2 implies that S is commutative. □

Every prime ring R is trivially a WRC zero-absorbing semiring. As an
outcome of the Theorem 2.5, we get the following Corollary:

Corollary 2.6. ([3], Theorem 3) Let R be a prime ring and U two-sided ideal
of R. If R admits a nonzero derivation d such that d(xy) = d(yx) for all
x, y ∈ U, then R is commutative.

Theorem 2.7. Let S be a WRC semiring and I a nonzero ideal of S. If S
admits a nonzero generalized derivation F with associated nonzero derivation
d such that F (xy)+ yx = F (yx)+xy for all x, y ∈ I, then S is commutative.

Proof. Given that
F (xy) + yx = F (yx) + xy for all x, y ∈ I. (2.5)

Replacing y by yx in (2.5) and using Proposition 2.3, we find that
xyd(x) + (F (xy) + yx)x = yxd(x) + (F (yx) + xy)x for all x, y ∈ I. (2.6)

In view of equation (2.5), we see that
xyd(x) = yxd(x) for all x, y ∈ I. (2.7)

By inserting zy for y in (2.7) and applying it, we obtain xzyd(x) = zxyd(x)
for all x, y, z ∈ I. With regard to the fact that S is WRC, the last expression
used alongside Fact 1 leads to x ∈ Z(S) or d(x) = 0 for all x ∈ I. Now, using
the same arguments as used in the end of the proof of Theorem 2.5, we get
the required result. □

An identical reasoning as above can be used to proof the following result.
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Theorem 2.8. Let S be a WRC semiring and I a nonzero ideal of S. If S
admits a nonzero generalized derivation F with associated nonzero derivation
d such that F (xy)+xy = F (yx)+ yx for all x, y ∈ I, then S is commutative.

As a consequence of applying Theorem 2.7 and Theorem 2.8, we acquire
the following corollaries:

Corollary 2.9. ([11], Theorem 2.1) Let R be a prime ring and I a nonzero
ideal of R. If R admits a generalized derivation F associated with a nonzero
derivation d such that F ([x, y]) = [x, y] for all x, y ∈ I, then R is commuta-
tive.

Corollary 2.10. ([11], Theorem 2.2) Let R be a prime ring and I a nonzero
ideal of R. If R admits a generalized derivation F associated with a nonzero
derivation d such that F ([x, y]) + [x, y] = 0 for all x, y ∈ I, then R is
commutative.

Theorem 2.11. Let S be a WRC semiring and I a nonzero ideal of S. If S
admits a nonzero generalized derivation F with associated nonzero derivation
d such that F (x)x = xF (x) for all x ∈ I, then S is commutative.

Proof. By hypothesis, we have

F (x)x = xF (x) for all x ∈ I. (2.8)

Taking x = x+ y in equation (2.8) and applying it, we see that

F (x)y + F (y)x = xF (y) + yF (x) for all x, y ∈ I. (2.9)

Substituting yx for y in (2.9) and using the fact that F (x)x = xF (x), one
can acquire

F (x)yx+ F (y)x2 + yd(x)x = xF (y)x+ xyd(x) + yF (x)x for all x, y ∈ I.
(2.10)

When we right multiply (2.9) by x and compare it to (2.10), we are given

xF (y)x+ yF (x)x+ yd(x)x = xF (y)x+ xyd(x) + yF (x)x for all x, y ∈ I.
(2.11)

Which means

yF (x)x+ yd(x)x = xyd(x) + yF (x)x for all x, y ∈ I. (2.12)

By replacing y with ry in equation (2.12), we arrive at

ryF (x)x+ ryd(x)x = xryd(x) + ryF (x)x for all x, y, r ∈ I. (2.13)
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Left multiplying (2.12) by r and merging with (2.13), one can obtain
rxyd(x) + ryF (x)x = xryd(x) + ryF (x)x for all x, y, r ∈ I. (2.14)

Hence
xryd(x) = rxyd(x) for all x, y, r ∈ I. (2.15)

Based on the fact that S is WRC, then equation (2.15) together with Fact 1
imply that x ∈ Z(S) or d(x) = 0 for all x ∈ I. Following the same reasons as
in the end of the proof of the Theorem 2.5, we obtain the required result. □

While every prime ring R is a WRC zero-absorbing semiring, the following
Corollary is an application of Theorem 2.11.

Corollary 2.12. ([9], Theorem 3) Let R be a 2-torsion free prime ring and J
be a nonzero Jordan ideal. If R admits a generalized derivation F such that
[F (u), u] = 0 for all u ∈ J , then F is a left multiplier or R is commutative.

Theorem 2.13. Let S be a 2-torsion free WRC semiring and I a nonzero
ideal of S. If S admits a nonzero generalized derivation F associated with a
nonzero derivation d such that F (x)d(y) = d(y)F (x) for all x, y ∈ I, then S
is commutative.

Proof. Make the assumption that
F (x)d(y) = d(y)F (x) for all x, y ∈ I.

Writing yu instead of y in the preceding expression, we obtain
F (x)d(y)u+F (x)yd(u) = d(y)uF (x)+yF (x)d(u) for all x, y, u ∈ I. (2.16)

Putting u = ud(z) in (2.16), we acquire
F (x)d(y)ud(z) + F (x)yd(u)d(z) + F (x)yud2(z)

= d(y)uF (x)d(z) + yF (x)d(u)d(z) + yF (x)ud2(z).
(2.17)

Right multiplying (2.16) by d(z), one can arrive to
F (x)d(y)ud(z) + F (x)yd(u)d(z) = d(y)uF (x)d(z) + yF (x)d(u)d(z). (2.18)

Invoking (2.18),(2.17), yields
F (x)d(y)ud(z) + F (x)yd(u)d(z) + F (x)yud2(z)

= F (x)d(y)ud(z) + F (x)yd(u)d(z) + yF (x)ud2(z).
(2.19)

Hence
F (x)yud2(z) = yF (x)ud2(z) for all x, y, u, z ∈ I. (2.20)
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While S is WRC, equation (2.20) and Fact 1 ensure that d2(z) = 0 or
F (x)y = yF (x) for all x, y, z in I. First we suppose that d2(z) = 0 for
all z ∈ I, then by Lemma 2.4, we get d = 0, a contradiction. Subsequently,
F (x)y = yF (x) for all x, y ∈ I, after taking y = x, we find F (x)x = xF (x)
for all x ∈ I. Accordingly, by Theorem 2.8 S is commutative. □

Any prime ring R is a WRC zero-absorbing semiring. Applying Theorem
2.13, we get the following Corollary:

Corollary 2.14. ([2], Theorem 2.6) Let R be a prime ring. If R admits
a nonzero generalized derivation F associated with a derivation d such that
[F (x), d(y)] = 0 for all x, y ∈ R, then R is commutative.

3. The categorization of some generalized derivations
In the following section, we are going to offer an overview and categorization

of several generalized derivations that satisfy specific algebraic characteristics.

Theorem 3.1. Let S be a 2-torsion free WRC semiring and let I be a nonzero
ideal of S. If S admits a generalized derivation F with associated derivation
d such that F (x ◦ y) = 0 for all x, y ∈ I, then F = 0.

Proof. Consider there is a nonzero generalized derivation F such that
F (x ◦ y) = 0 for all x, y ∈ I, thus

F (xy) + F (yx) = 0 for all x, y ∈ I. (3.1)

Once, we replace y by yx in equation (3.1), we acquire

xyd(x) + F (xy)x+ F (yx)x+ yxd(x) = 0 for all x, y ∈ I. (3.2)

Applying (3.1), the previously equation gives

xyd(x) + yxd(x) = 0 for all x, y ∈ I. (3.3)

Substituting zy for y in (3.3), we obtain

xzyd(x) + zyxd(x) = 0 for all x, y, z ∈ I. (3.4)

Left multiplying equation (3.3) by z and comparing with (3.4), to get

xzyd(x) = zxyd(x) for all x, y, z ∈ I (3.5)

In light of Fact 1, equation (3.5) implies that x ∈ Z(S) or d(x) = 0 for all
x ∈ I. Through the same methods as in Theorem 2.5, we could see that S
is commutative. In view of commutativity and equation (3.1), it follows that
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F (xy) + F (yx) = 2F (xy) = 0 for all x, y ∈ I. By the 2-torsion freeness of S,
we arrive at

F (xy) = 0 for all x, y ∈ I. (3.6)
Changing y to yz allows us to attain

F (xy)z + xyd(z) = 0 for all x, y, z ∈ I. (3.7)

Which leads to
xyd(z) = 0 for all x, y ∈ I. (3.8)

Specifically, for any y ∈ I, xyd(z) = 0yd(z). While S is WRC and I ̸= {0},
the above expression gives that d(z) = 0 for any z ∈ I. Consequently,
d(I) = 0 and Fact 3 assures that d = 0. On the other hand equation (3.6)
becomes F (x)y = 0 for all x, y ∈ I. Now, replace y by yz and apply the
commutativity of S to attain yzF (x) = 0 = 0zF (x) for all z ∈ I. Given
that I ̸= {0}, by utilizing Fact 1, we achieve that F (x) = 0 for all x ∈ I.
Consequently, F (I) = (0) and Fact 4 forces that F = 0. □

Theorem 3.2. Let S be a 2-torsion free WRC semiring and let I be a nonzero
ideal of S. If S admits a generalized derivation F with associated derivation
d such that F (x ◦ y) = x ◦ y for all x, y ∈ I, then F = id.

Proof. We are given that

F (x ◦ y) = x ◦ y for all x, y ∈ I. (3.9)

In equation (3.9), update y with yx and use the fact that x ◦ (yx) = (x ◦ y)x
to achieve

F (x ◦ y)x+ (x ◦ y)d(x) = (x ◦ y)x for all x, y ∈ I. (3.10)

Making use the last equation with equation (3.9), we obtain

(x ◦ y)d(x) = 0 for all x, y ∈ I. (3.11)

Hence
xyd(x) + yxd(x) = 0 for all x, y ∈ I. (3.12)

While equation (3.12) is identical to equation (3.3), then reasoning as in the
proof of Theorem 2.13, we could demonstrate that S is commutative and
d = 0. In addition, equation (3.9) can be rewritten as

F (xy) + F (yx) = xy + yx
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for all x, y ∈ I. Based on the commutativity of S, it follows that
2F (xy) = 2xy for all x, y ∈ I. While S is 2-torsion free and d = 0, we
attain

F (x)y = xy for all x, y ∈ I. (3.13)
Modifying y by zy in (3.13), we acquire

F (x)zy = xzy for all x, y, z ∈ I. (3.14)
For the reason that I ̸= {0}, equation (3.14) in combination with Fact 1 lead
us to F (x) = x for all x ∈ I, which assures that F = id. □
Theorem 3.3. Let S be a 2-torsion free WRC semiring and let I be a nonzero
ideal of S. If S admits a generalized derivation F with associated derivation
d such that F (x ◦ y) + x ◦ y = 0 for all x, y ∈ I, then F + id = 0.

Proof. Suppose that
F (x ◦ y) + x ◦ y = 0 for all x, y ∈ I. (3.15)

If we substitute y by yx in (3.15) and applying the fact that x◦(yx) = (x◦y)x,
we are able to derive (x ◦ y)d(x) + (F (x ◦ y) + x ◦ y)x = 0 for all x, y ∈ I. In
view of equation (3.15) together with the previous expression, one could see
that

xyd(x) + yxd(x) = 0 for all x, y ∈ I. (3.16)
Knowing that equation (3.16) is identical in form to equation (3.3), then
following the same logic as in the proof of the theorem 2.13, we can draw that
S is commutative and d = 0. Accordingly, equation (3.15) can be rewritten
as F (xy)+F (yx)+xy+ yx = 0 for all x, y ∈ I. Furthermore, commutativity
of S shows that 2(F (xy) + xy) = 0 for all x, y ∈ I. Because of 2-torsion
freeness, we get F (xy) + xy = 0 and while d = 0, we are able to see that

F (x)y + xy = 0 for all x, y ∈ I. (3.17)
By changing y to zy in (3.17) as well as applying the commutativity of S, we
achieve

yz(F (x) + x) = 0 = 0z(F (x) + x) for all x, y, z ∈ I. (3.18)
Given that I ̸= {0}, equation (3.18) combined with Fact 1 gives F (x)+x = 0
for all x ∈ I. Consequently, F + id = 0. □

The following example demonstrate how in some cases our findings do not
hold. In reality, we might conclude from the following example that the
condition WRC-semiring must be fulfilled.
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Example 3.4. Let

S =


 0 a b

0 0 c
0 0 0

 |a, b, c ∈ N

 ,

where N is the set of positive integers including 0. If we define the maps F
and d on the set S given by

F

 0 a b
0 0 c
0 0 0

 =

 0 0 c
0 0 0
0 0 0

,

and

d

 0 a b
0 0 c
0 0 0

 =

 0 0 c
0 0 0
0 0 0

.

F is a nonzero generalized derivation associated with d of S that satisfies the
conditions of Theorems 2.5, 2.7, 2.8 and 2.13. But S is not commutative.

Acknowledgments
The authors would like to thank Shahrekord University and express their
gratitude to the referees for their valuable comments.

References
1. P. J. Allen, A fundamental theorem of homomorphisms for semirings, Proc. Amer. Math.

Soc., 21(2) (1969), 412–416.
2. M. Ashraf, A. Ali and R. Rani, On generalized derivations of prime rings, Southeast Asian

Bull. Math., 29(4) (2005), 669–675.
3. H. E. Bell and M. N. Daif, On derivations and commutativity in prime rings, Acta Math.

Hungar., 66(4) (1995), 337–343.
4. H. E. Bell and M. N. Daif, Remarks on derivations on semiprime rings, Int. J. Math.

Math. Sci., 15(1) (1992), 205–206.
5. R. Dedekind, Uber die Theorie der ganzen algebraischen Zahlen, Braunschweig, 1894.
6. V. De Filipis, A. Mamouni and L. Oukhtite, Weakly left cancellative semirings with

derivations, São Paulo J. Math. Sci., 14 (2020), 351–360.
7. J. S. Golan, Semirings and their applications, Dordrecht, NL: Kluwer Academic Publish-

ers, 1999.
8. V. Gupta and J. N. Chaudhari, On commutativity of semirings, East-West J. Math., 8(1)

(2006), 97–100.
9. L. Oukhtite and A. Mamouni, Generalized derivations centralizing on Jordan ideals of

rings with involution, Turkish J. Math., 38(2) (2014), 225–232.
10. L. Oukhtite, A. Mamouni and M. Ashraf, Commutativity theorems for rings with differ-

ential identities on Jordan ideals, Comment. Math. Univ. Carolin., 54(4) (2013), 447–457.



208 CHARRABI, MAMOUNI AND NEJJAR

11. M. A. Quadri, M. S. Khan and N. Rehman, Generalized derivations and commutativity
of prime rings, Indian J. Pure Appl. Math., 34(9) (2003), 1393–1396.

12. S. K. Sardar, On derivation in semirings, Southeast Asian Bull. Math., 33(5) (2009),
917–928.

13. M. Shabir, A. Ali and S. Batool, A note on quasi-ideals in semirings, Southeast Asian
Bull. Math., 27(5) (2004), 923–928.

14. H. S. Vandiver, Note on a simple type of algebra in which the cancellation law of addition
does not hold, Bull. Amer. Math. Soc., 40 (1934), 914–920.

15. H. J. Weinert, Über Halbringe und Halbkörper I, Acta Math. Hung., 13(1-2) (1962),
365–378.

16. H. Yazarli and M. A. Öztürk, On the centroid of prime semirings, Turkish J. Math.,
37(4) (2013), 577–584.

Kamal Charrabi
Department of Mathematics, Faculty of Sciences, Moulay Ismaïl University, P.O. Box 11201, Meknes, Mo-
rocco.
Email: kamal95charrabi@gmail.com

Abdellah Mamouni
Department of Mathematics, Faculty of Sciences, Moulay Ismaïl University, P.O. Box 11201, Meknes, Mo-
rocco.
Email: a.mamouni.fste@gmail.com

Bader Nejjar
Laboratory of Innovant Technologies, High School of Technology, SMBA University, P.O. Box 2427, Fes,
Morocco.
Email: bader.nejjar@gmail.com



Journal of Algebraic Systems

COMMUTATIVITY FOR THE WEAKLY RIGHT CANCELLATIVE SEMIRINGS:

AN ENTIRELY NOVEL CATEGORY OF SEMIRINGS AND

A WEAK CONDITION FOR COMMUTATIVITY RESEARCH

K. CHARRABI, A. MAMOUNI AND B. NEJJAR

جدید دسته ای معرفی راست: سمت از حذف پذیر ضعیفاً نیم حلقه های در تعویض پذیری

تعویض پذیری برای ضعیف شرطی بررسی و نیم حلقه ها از

نجار٣ بدر و مامونی٢ عبداله چرابی١، کمال

مراکش مکناس، اسماعیل، مولای دانشگاه علوم، دانشکده ریاضی، ١,٢گروه

مراکش فاس، ،SMBA دانشگاه فناوری، دبیرستان نوآورانه، فناوری های ٣آزمایشگاه

حلقه قوی شرط از کمتر که گونه ای به است تعویض پذیری تحقیقات در نوآوری ارائه مطالعه این هدف
که می کنیم بررسی و معرفی راست سمت از حذف پذیر ضعیفاً نیم حلقه های مقاله، این در باشد. اول
علاوه، به می شوند. اعمال نیم حلقه ها از کلاس این در چگونه تعمیم یافته مشتق های و تعویض پذیری

می دهیم. ارائه را تعمیم یافته مشتق های این از برخی طبقه بندی و دقیق توضیحی

تعمیم یافته. مشتق مشتق، حذف پذیر، نیم حلقه نیم حلقه، کلیدی: کلمات


	1. Introduction
	2. Main results
	3. The categorization of some generalized derivations
	References

