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LAPLACIAN SPECTRUM AND ENERGY OF NON-COMMUTING
GRAPHS OF FINITE RINGS

M. Sharma and R. K. Nath*

ABSTRACT. We compute spectrum, energy, Laplacian spectrum/energy and
signless Laplacian spectrum/energy of non-commuting graphs of certain finite
non-commutative rings. In particular, we consider finite rings R such that
|R| = p?,p3, p*, p°, p?q and p?q, where p and ¢ are primes. Further, we consider
n-centralizer finite rings for n = 4,5, and p + 2; more generally, finite rings with cen-
tral quotients isomorphic to Z, x Z,. Our computations reveal that non-commuting
graphs of these rings are L-integral. We also determine whether non-commuting
graphs of these rings are integral, Q-integral, hyperenergetic, L-hyperenergetic or
Q-hyperenergetic.

1. INTRODUCTION

An undirected graph I'p on the set of vertices R\ Z(R), where R is a finite
non-commutative ring and Z(R) is the center of R, is called non-commuting
graph of R if two vertices u # v are adjacent whenever uv # vu. Erfanian,
Khashyarmanesh and Nafar [6] began researching non-commuting graphs of
finite rings. However, in case of finite groups, non-commuting graphs were
considered by Neumann [12] in 1976 while answering a question raised by
Erdos. Recent results on I'g can be found in [3]. In this article, we compute
spectrum, energy, Laplacian spectrum, Laplacian energy, signless Laplacian
spectrum and signless Laplacian energy of I'p for certain classes of finite
rings. As a consequence of our results we determine whether 'y is integral,
L-integral, Q-integral, hyperenergetic, L-hyperenergetic or Q-hyperenergetic
for the rings considered in Section 3. Throughout the paper, % denotes
an additive quotient group and p, ¢ denote distinct primes. It is worth
mentioning that Laplacian spectrum and signless Laplacian spectrum of zero
divisor graph of the ring Z, for some n were computed in [15] and [13, 1]
respectively.

Let G be a finite graph with e(G) as the set of edges and v(G) as the set of

vertices. The spectrum of G denoted by Spec(G) is the set
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{(a1)™, (a2)™, ..., (o)™},
where «a;’s represent the eigenvalues of A(G) (adjacency matrix of G) and a;’s

are their multiplicities for 1 < ¢ < n. If a;’s are integers then G is said to be
integral. We have

E(g) = Z CLZ"OZZ"
1=1

which is the energy of G. “If E(G) > E(Kyq)) = 2(|v(G)| — 1) then G is
called hyperenergetic”. Gutman [3] and Walikar et al. [18] introduced this
class of graphs in 1999.

Let D(G) be the degree matrix of G. Then the Laplacian matrix of G is
given by L(G) = D(G) — A(G). The Laplacian spectrum of G denoted by
L-spec(G) is the set {(81)", (52)%, ..., (Bn)""} where 3;’s are the eigenvalues
of L(G) and b,’s are their multiplicities for 1 < j < m. If 8;’s are integers
then G is said to be L-integral. We have

B —

Y

2le(9)|
[0(9)]

the Laplacian energy of G. “If LE(G) > LE(K,q)) = 2(|v(G)| — 1), then G
is called L-hyperenergetic”.
Again, the signless Laplacian matrix of G is defined by

Q(G) = D(G) + A(9).
The signless Laplacian spectrum of G denoted by Q-spec(G) is the set
{(m), (72)2, ..., (1)}, where 74’s are the eigenvalues of Q(G) and ¢;’s are
their multiplicities for 1 < k < [. If «4’s are integers then G is said to be
Q-integral. We have

Yk —

: 2e(9)|
LEJr(g) = C )
kZ ' \v<g>|‘

the signless Laplacian energy of G. “If LET(G) > LE™ (K, g)) = 2(|v(G)|—1)
then G is called Q-hyperenergetic”. These classes of graphs were considered
in [7].

2. PRELIMINARY RESULTS

Let ‘H; and H, be two graphs such that v(H;) N v(Hz) = (. Then
H = H, U Hsy is the graph with

v(H) = v(H1) Uv(Hs) and e(H) = e(H1) U e(Hs).
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Throughout this paper we write mK, = K,U---UK,, where K, is the

~"

m-times
complete graph and |v(K,)| = n. Results on the complement of I'p were

obtained in [4, 7, 11, 16, 17]. Among those, the following results will be used
in subsequent sections.

Lemma 2.1. Let R be a ring.
(a) [f% >~ 7, X Ly then T = (p+ 1)K (y_1y,, where n =|Z(R)|. (See [/,
Theorem 2.4].)
(b) Let |R| = p?’q and Z(R) = {0},
(i) If “ € {p,q,p*pq} and (t — 1) divides (p*q — 1)”, then

I'r = pq_ K; 1 and L-spec(T'g) = {(O) ,(t— 1)w (See
[17, Theorem 2.9(i)] and [7, Theorem 2.5(a)].)
(i) If (p = Dl + (g = Dl + (p* = 1)lz + (pg — 1)ls = p*q — 1, then

Tr=UKy 1ULKe UK, 1 ULK,
and

L-SpeC(F_R) — {(0)l1+lg+l3+l4’ (p . 1)(1)—2)[17 (q . 1)((]_2)[2’

(p2 — 1)(2’2—2)13’ (pg — 1)(pq—2)l4} '
(See [17, Theorem 2.9(ii)] and [7, Theorem 2.5(b)].)

Lemma 2.2. Suppose that R is a ring with unity.
(a) Let |R| = o
(i) If Z(R) has p elements then Tp = (1 + p + p*)Kpp-1) or
LK1y U g2 1) and Lespee(Tg) = { (0771, (p? — p)r'—+*-2r-1}
or

{0y, (p? = )00 ()

respectively, where p*> +p+1 =1+ (p+ 1)l5. (See [16, Theorem 2.5]
and [7, Theorem 2.2(a)].)
(i) If Z(R) has p* elements then I'r = (p + 1)K(p_p2). (See [10,
Theorem 2.5] and [7, Theorem 2.2(b)].)

(b) Let |R| = p° and Z(R) is not a field.
(i) If Z(R) has p* elements then T = (1 + p + p*)K,2(p-1) or
llez(p_l) LJ ZZKpQ(pQ—l) and
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L-spec(Tr) = {(0)p2+p+1, (p® — pQ)p5—2p2—p—1}
or

{(0)“12, (p* =) (pt — p2)(p4p21”2}

respectively, where p*> +p+1 = 1 + (p+ 1)ly. (See [16, Theorem 2.7]
and [7, Theorem 2.3(a)].)
(ii) If Z(R) has p* elements then Tp = (p+ 1)Kp_pm). (See [16,
Theorem 2.7] and [7, Theorem 2.3(b)].)

(¢) If |R| = p*q and Z(R) has pq elements, then Tp = (p+ 1) K2, p, and

L-spec(I'g) = {(O)PH, (p?q — pq)(p+1)(p2q—pq—1) }

(See [17, Theorem 2.12(iv)] and [7, Theorem 2.6].)
(d) Let |R| = p*q and Z(R) has p* elements. Then
(i) FR = Z%Kps_pz and
P

— pg—1 (pg—1)(p3—p?—1)
Lespec(TT) = { 5, (7 — )55 |

whenever (p — 1) divides (pg — 1). (See [17, Theorem 2.12(i)] and [7,
Theorem 2.7(a)].)
(ii) Tp = M=K

= =1 p2q—p? and

_ pg—1 (pg—1)(p2q—p>—1)
Lespec(T) = { (O, (2 =) =0
whenever (¢ — 1) divides (pg — 1). (See [17, Theorem 2.12(ii)] and [7,
Theorem 2.7(b)].)
(iii) I'r = lle:a_pz L lzszq_pz and

L-spec(T'r) = {(O)l1+l2, (p® — p2)11(p3—p2—1)7 (p%q — pz)lz(qu—pQ—l)}

whenever pg — 1 = (p — 1)l1 + (¢ — 1)la. (See [17, Theorem 2.12(iii)]
and [7, Theorem 2.7(c)].)

A class of non-commutative rings R, introduced by Erfanian et al. in [0],
is referred to as CC-ring if the centralizers Cr(y) are commutative whenever

ye R\ Z(R).

Lemma 2.3 ([4, page 3]). If S1,59,...,S, are the non-identical centraliz-
ers of s € R\ Z(R), where R is a finite CC-ring and |Z(R)| = n, then

—_— n

I'n=UKq_, and

L-spec(Tr) = {(0)", (151 =)=t oy (IS0] = m)lSi=n1Y,
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3. VARIOUS SPECTRUM AND ENERGIES

The following results will help us to compute spectrum, Laplacian spectrum
and signless Laplacian spectrum of complete r-partite graph in the succeeding
sections.

Theorem 3.1 (] Corollary 2.3] and [20, Corollary 2.2]). Let G be a com-
plete r-partite gmph Ky porpr = Koy praspo,...aep. 00 1 vertices. Then

(a) the characteristics polynomzal of A(G) is

S

Pg(x) = $n_rH(x "‘pi)ai_l H (4 pi) — Zajpj H ( + py)
i=1

1=1 i=1,i#j

(b) the characteristics polynomial of Q(G) (Q-polynomz’al) is
D 1 (SRR o (N N wp
Qg(x) == H(m n+ p;)“%® H(x n+ 2p;)“ (1 ;x—n+2pi> :

The following well-known result gives the spectrum of a strongly regular
graph.

Theorem 3.2. Let H be a strongly regular graph with parameters (k, A, ),
then

At/ 24— N [ A O \
SpeC(H):{(k)1,< H \/ 2# H) : ( H \/ 2/‘ N) }’

where nqy = % <|U(7-[)| — 1+ 2’f+(|v(7i)|1)(/\u)> and

V(A=) +4(k—p)

_1 g 2kt(u(H) =D (A—p)
" (‘”(H)‘ b ot ) |

Theorem 3.3. [10, Theorem 3.6] For any graph H, if
L-spec(H) = { ()", (%)%, .. (Bn)™ |
where 81 < By < -+ < By, then

Lspec(H) = {(0)", ([o(H)] = Ba)'", ([0(H)] = Bu-1)",
(’U(%)l - ﬁm—Z)bm*Q, cey (‘U(IH)’ — 61)171_1}.

We arrive at the following conclusion as a result of Theorems 3.2-3.3.

Theorem 3.4. If H = mK,, then
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Spec(H) = { (=n)" ", (0)" 1", ((m — 1)n)' },
Lespec(H) = { (0)% (m — 1jn)"¢*~), (mn)~! |
and E(H) = LE(H) = 2n(m — 1).

Proof. If H = mK, then it is a strongly regular graph where |[v(H)| = mn,
k=(m-—1n=pu\=(m-—2)n. Wehave \ — u= —n, k—p =0 and so
V(A — )2 +4(k — p) = n. Therefore,

A=p—=r/(A=p)?+4(k—p) . A=pty/A—p)2+4(k—p) 0
> =—n, > =

and
2k+([v(#)| =D (A—p)
SO ()
Hence, Spec(H) = {(—n)m_l, (0)(r=bm ((m — 1)n)1} (by Theorem 3.2) and
so BE(H)=(m—1)]—n|4+0+nlm—1]=2n(m—1).

Since L-spec(H) = {(O)m, (n)m(”_l)}, by Theorem 3.3 it follows that

=2m —mn — 1.

L-spec(H) = {(0)1, ((m — 1)n)me=1), (mn)ml}.

We have 2|L€((;{)|‘ = 2 (mn(”;”_l) — m"(;_l)) = (m — 1)n. If follows that
|

0—n(m—1)] =n(m—1), [n(m—1)—n(m—1)| =0 and |mn—(m—1)n| = n.
Hence, LE(H) =n(m —1) +0+n(m — 1) = 2n(m — 1). O

Theorem 3.5. If% >~ 7., x Z, and |Z(R)| =1, then
Spec(I'r) = { (=n(p = 1), (0"~ (p(p — 1))* },
Qrspec(Tr) = { (0% = p)m) 7771, (0 = V), (20° = 20)m)' |,
Lspec(Tp) = {(0)", (rp(p — 1) 77 (n(p* = 1))}

and E(I'r) = LE™('r) = LE(I'g) = 2p(p — 1)n.

Proof. By Lemma 2.1(a), we have 'y = (p + 1)K(,_1),- This implies
w(Tg)] = (»* — 1)n and Tr = Kpy1.p-1);- Therefore, Theorem 3.4 leads
to the expression of Spec(I'r), L-spec(I'g), E(I'r) and LE(I'g). Using The-
orem 3.1(b), we have

Qra(z) = (& — (p* = )y + (p — 1)y PHH =070
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x (z— (p* — 1)n+2(p — 1))t (1 T T (p? Epl); i)g(p — 1)’0)

= (@ =pp = D) = (p— 1) (e — 200 — D).
Thus,

Qrspec(Tr) = (7 = p)m) =721, (0 — 1)), (20° = 2p))' }.

Number of edges of I'p is (p—l)(p2—1)2772—(p2—1)77. Therefore,

2_1 2.2 2_1 1 2_ 2_ 2_1 -1 2_1 2
le(Tr)| = ("= 772 ("=n _ (=D 1)277 (°=n _ plp )(5 s
Now,
Q\G(FR)I‘ 5
plp—1)n— —==| = |plp —1)n—(p” —p)n| =0,
‘ [v(I'R)| | |
2|le(T'g)|
(p—1)°n— = |(L=p)nl = (p—1)n
‘ [v(T'R)|
and
QIG(FR” 2 2
2p(p—1)n — ~—7=—~7| = (" —p)n| = (" —p)n.
| [v(I'R)| | |
Therefore,
LEY(TR) = ((p* -~ 1)np—p—1)x04+px (p— 1)+ > —p)n=2p(p— 1)y

]

The following results give various spectra and energies of I'p for some n-
centralizer rings (see [1, 2, 5]).

Theorem 3.6. Let R be a finite n-centralizer ring and |Z(R)| = 1.
(a) If n =4, then

Spec(Ur) = { (=n)2, 0", (20)'},
Qrspec(Tr) = { (2n) %, (), (4n)' }.
L-spec(I'g) = {(0)1, (277)377737 (377)2

and E(T'y) = LE*(I'y) = LE(T'g) = 41.

——



(b) If n =5, then
Spec(Tr) = {(=20)", (0", (61)'},
Qrspec(T'r) = {(6n)™~*, (4m)*, (120)'},
L-spec(Tr) = {(0)", (6m)""", (8n)° |

and E(T'p) = LE*(T'g) = LE(Ty) = 121,
(¢) If n=p+2 and |R| = p* for k € N, then

Spec(T) = { (=(p = Ln?, (0) 7=~ (5% = p))' |.
Qspec(Tp) = { (0= P~V ((p = 1)), (262 2p))' }.
Lspec(Tr) = {(0), (0 @ = )" 77 (n (0* = 1))}

and E(T'gr) = LET(I'gr) = LE(Tg) = 2p(p — 1)n.
Proof. If n = 4, then ﬁ = Zo X Zo (conf. [2, Theorem 3.2]) and if n = 5,

then ﬁ = Zs X Zg (conf. [2, Theorem 4.3]). Further, if |R| = p* and
n = p+ 2, then ﬁ = Z, x Z, (conf. [2, Theorem 2.12]). Therefore,
Theorem 3.5 leads to the conclusion. L]

Theorem 3.7. Let Pr(R) be the commuting probability of R and |Z(R)| = n.
(a) If Pr(R) = 2, then

Spec(T'n) = { (=) (0)"~%, (20)'},
Q-spec(T'y) = {(277)3” L ()2, (4m)' .

L-spec(I'g) = {(0)1, (277)377737 (377)2}

and E(FR) = LE+(FR) = LE(FR) = 477.
(b) If Pr(R) = %, where p is the smallest prime divisor of |R|, then

Spec(I'r) = { (=n(p - )) ()ﬂ“-”-p*,(np(p—l))l},
Qespec(Tr) = {((* = p)n) ™~V (p = 1), (207 = 2p))

L-spec(I'g) = { ))n(pz—l)—p—17 (n (p2 - 1))p}
and E(L'g) = LE+(FR) = LE(FR) = 2p(p — 1)n.
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Proof. We have % > 7y x Ly and Z, X Z, if Pr(R) = 2 and % (see
Theorems 1 and 3 of [9], in the second case p is assumed to be the smallest
prime divisor of |R|). Therefore, Theorem 3.5 leads to the conclusion. ]

Theorem 3.8. Let R be a non-commutative ring.
(a) If |R| = p?, then

Spec(Tn) = { (== 1))". (0" 7% (p(p—1)'}.
Qspec(Tr) = {(0* —p)" 772 ((p— 12V, (2" —2)' },
Lspec(Tr) = { (0%, (plp = )Y 77, (0 = 1)"}

and E(T'g) = LE*(I'g) = LE(Tr) =2p(p — 1).
(b) If |R| = p* with unity, then

Spec(Ur) = { (p— )7, (0"~ (" = ") |.
Qrspec(Tr) = { (0" = p2)" 7, (p(p — 12", (29" — 2p)'}
Lspec(T) = {(0)", (° = )" " (0" = p)'}
and E(I'g) = LE*(I'g) = LE(I'g) = 2p*(p — 1).
(R

Proof. Note that |Z(R)| = 1if |R| = p? and |Z(R)| = p if |R| = p* with unity
respectively. In both the cases ng B = = Zy, X Z,. Therefore, Theorem 3.5 leads

to the conclusion. ]

Now we compute various spectra and energies of I'p for higher order finite
non-commutative ring.

Theorem 3.9. Let |R| = p* with unity.
(a) Suppose that Z(R) has p elements. Then

Spec(Tr) = { (=p(p = 1)), (01, (p' =)'},
Q-spec(Tr) = { pt = p P I (pt = 2 4 )Y (2p — 2p2)1},
L-spec(I'g) = { p —p*=2p-1 (p4_p)p2+p}
and E(I'r) = LE*(FR) = LE(Tg) = 2p*(p* — 1) or
Spec(I'g) = {(0)p4‘p‘“‘l% (p=p*)" " (p = p*)1, (1), (xg)l},
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where x1,x9 are the roots of the polynomial
2* —a(p' —p = p?+p) = (0’ —p' =P+ + - 1),
Q-spec(I'r) = {(p4 = p?)h ) (pt — )R,

(0" = 20" +p)" L (0" = 20" + )27 (21), (562)1},
where x1,x9 are the roots of the polynomial
2® —a(3p* —2p° = 2p° +p) +p* — 2p" — 2p° + 6p° — 2p
+p° + L(p* = p)(p" = 20° +p) + L(p° — p) (" — 20" + D),
L-spec(T'g) = {(0)1’ (pt — pP)@P =) (pt — p2)hP=p=1) (8 _p)z1+lg—1}
and LE(T'g) = zﬁpﬂ ((p4 —p?)(ly +ply) + (p° — p° — p* —|—p2)11l2) , where

Lh+l(p+1)=p*+p+1.
(b) Suppose that Z(R) has p* elements. Then

Spec(Tn) = { (=" + p2)7, (0771, (o' = p)1},
Qespec(Tr) = { (' = p*)' "1, (' — 20" + ), (20" —2p)' ],
L-spec(T'r) = {(0)1, (' =P (pt - p2)p}

and E(T'r) = LE*(I'g) = LE(T'r) = 2p(p* — p*).

Proof. (a) Lemma 2.2(a)(i) gives Tp = (1 + p + p*)Kyey or
llK(pQ—p) U ZQK(pB_p), when 1 + lo(p+ 1) = p2 +p+ 1.
If T = (p*+ p+ 1)K(;2_p) then by Theorem 3.4 we have

Spec(I'g) = {(—p2 +p)P P (0 (pt - p2)1},
Lspec(Tr) = {(0)!, (' — )" 21, (o — )" 7}

and E(T'g) = LEIR) = 2p*(p* — 1). Here, [v(I'g)| = p* — p and
I'r = K24 pi12—p. Using Theorem 3.1(b), we have

Qry(2) = (x — (p* = p) + p> — p)P PP

4 2 p2+p+1 . p4 - P
@ =" -p)+ 2 - p) (1 x — (p* —p) + 2(p? —p)>
= (z— (p* =) T N a — (p* — 20" + )P P (x — (20 — 2p?)).

Therefore,

4 3
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Q-spec(T'g) = {(p4 — pA)P P2l (gt 9p? - p)Pe (2t — 2p2)1}-

. 6_.5_ .4 3, 2
Number of edges of ', is E2—E_P4P4P  Therefore,

8 5 4 2 6 5 4 3 2 3(3 2
_ pP=2p°—p4p*+p  p—p°—p'—p’+p*+p _ pP(p°-D(p°-1)
IG(FR” = — = .

2 2 2
Now,
2le(Tp
p4—p2—#' p' —p* —p'+p*| =0,
2le (FR)|‘
4 2 2 2
p =2 +p——=|=|—p +p =p —p
lv(I'Rr)| | |
and [2p* — 2p? — 2|L€((1“F;))\| = ‘p‘l —p2’ = p* — p?. Thus,
LE*(Tg) = (' —p" =20 = 1) x 0+ (p*+p) x (p* —p) +p* — p°
= 2p*(p° — 1).

If Tp = WKy UKy, then I'r = Kj p2pp,,9p. This implies
[o(T'r)| = p* — p.
Using Theorem 3.1(a), we have
PFR(x)
2 2

:x(pzx,p)f(zlﬂz)H(x+pi)ai—1 H T+ p;) Zajpj H (z +pi)

1=1 j=1 1=1,i#j
_ xp4*p7h*l2(x _|_p2 . p)ll—l(aj +p . p)1271
X ((x+p*=p)a+p’—p) =L@’ —p)(z+p° —p)
— b(p® —p)(z +p° —p))
=2 P — (p— PPN - (0 - )

x (@ —z(p'—p*—p"+p)— 0 —p' =P +p*)(lh + 1 — 1)).

Thus, Spec(T'r) = {(0)7’4‘7"“‘1% (p—p)" (o= (), (9:2)1}, where
x1, Ty are the roots of the polynomial

?—z(pt—p —pP+p)— (0 —p' =P+ )L+ —1).
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Using Theorem 3.1(b), we have

2 2
Qry(z) = [ [z = (" = p) + )" V] [ (& — (" — p) +2p)"
i=1 1=1
= a;pP;

(1 - ;x (' =p+ 2pz->
— (x _ (p4 _ p) 4 p2 _ p)ll(P P*l)(x _ (p4 _ p) + p3 _ p)lz(PS*pfl)
x (= (p* —p) +2p* = 2p)"(x — (p* — p) + 2p° — 2p)"
w(1_ L(p* —p) I (p® — p) )

ep+2 -2 z— (' -p)+2pP—2p
= (z— (p' =)' V(@ — (p* = )Y
x (x— (' =20 + )" (z — (" = 20" +p))"

><<1— _l1(p2—p) l(p® —p) )

P =202 +p) x— (' —2p3+p)

Therefore,
Qry(w) = (x = (' =y Dw — (p' = p?)) 7Y
(z—(p" =20 +p)" Hx— (" = 20" +p)> " f(2),
where
f(z) = (2* — x(3p* — 2p* — 2p* + p) + p* — 2p" — 2p° + 6p° — 2p* — 2p°
+p* + L(p* — p)(p* — 20" +p) + b(p® — p)(p* — 20* + p))
Thus
Q-spec(I'p) = {(p4 — p?)h e (pt — ptyelre ),

(p4 - 2292 —'_p)ll_lv (p4 - 2]?3 +p)l2_17 (5171)1, (372)1}7

where x1, x5 are the roots of the polynomial f(z).
Using Lemma 2.2(a)(i), we have

L—spec(F_R) — {(O)lwlz7 (p2 . p>11(p2_p_1)7 (p3 B p)lg(pf’—p—l)}'
Thus, Theorem 3.3 yields

L—SpeC(FR> = {(0)1, (p4 — p3)lg(p3—p—1)7 (p4 — p2)l1(p2—p—1)’ (p4 _ p)lﬁ-lz—l}.
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Here [v(I'g)| = p* — p, |e(Tg)| = PS(Pfl)(PQ;l)(lﬁpl?) and so

2le(Tr)| _ (p4—p2)(l1+pl2)'

lv(Lr)| p>+p+1
Therefore
Pt —p — 2le(I'g)| _ (p° — p*)ly
w(Tgr)| P +p+1’
PN 2leTr)l| _ (' —p*)l
w(Tg) | p*+p+1’
Sy el 0P = p) b+ (p+ 1)
[v(I'R)] pPP+p+1
and so
) (L pl S p)(p* —p— 1)l
LE(Ty) = (p 2p)(1+p2)+(p p)Q(p p—1)hls
p-+p+1 p +p+1
N (p* = p*)(p* —p— V)lly N P> =p)h+ (+ 1)) (L + 1 —1)

pPP+p+1 p*+p+1

Consequently, we obtain the necessary expression.

(b) The expressions for Spec(I'g), L-spec(I'g), E(I'g) and LE(I'p) follow
from Lemma 2.2(a)(ii) and Theorem 3.4. By Lemma 2.2(a)(ii), we have
Tr = (p+ 1)K(»_p2). This implies [o(T'g)| = p* — p? and T = Kpp1 2.
Using Theorem 3.1(b), we have

Qrp(z) = (v — (p4 — p2) +p — p2)(p+1)(p3—p2—1)

X (2= (0" =p’) + 20" = p"))"! (1 - (p! —pp2)_52(p3 - p2)>

= (z— (p* = )P TP N — (p* - 207+ pH))P(x — (20 — 20%)).

Therefore,

Q-spec(T'g) = {(p4 — PP L (gt 2p3 4 PP (2pt — 2p3)1}-

(p+1)(p3—p;)(p3—p2—1). Thus

Number of edges of I'y is

4_ 2 4_ 271 1 3_ 2 3_ 271 5 271 1
le(TR)| = ('—p )(120 =) _ (p+D( p2)(p p’-1) _ 2)(19 )

Now
pt—pd — 2le(I'p)|
[0(T'r)|

‘= pt —p® —p*+p°| =0,
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> QIG(FRN'

pt—2p°+p = |-p* +p*| =p* —p°

[0(TR)|

and
2le(T'g)| 4 3 4 3
2t —2p’ — 5| = [p' —p’| =p' =1’
‘ [v(I'r)] | |
Thus, LE*(I'g) = (p' —p* —p—1) x0+px (p° —p?) +p' —p* = 2(p" - p’).
Theorem 3.10. Let |R| = p° with unity and Z(R) is not a field.

(a) Suppose that Z(R) has p* elements. Then
Spec(Tn) = { (=p + )77, (02"~ (" =)' },
Q-spec(Tp) = { (b = p*) 7071 (5P — 2"+ p?)"*7, (20 — 2p%)' |,
L-spec(I'z) = {(0)1, (0 = PPy - pz)p2+”}
and E(T'g) = LET(I'g) = LE(T'g) = 2(p° — p?) or
Spec(T'r) = {(0)”5”2“2, (p* =) (0 =P (), (xa)l},

where x1,x9 are the roots of the polynomial
X r\p-—p —p tp p—p —p TP )11 12 )

3_ 2 4 .2 B
Q—spec(FR) = {(p5 _ p3)l1(p p 1), (p5 _ p4)l2(p P 1), (p5 . 2]93 —|—p2)l1 1’
(p5 o 2p4 +p2)l2—1’ (371)1, (.%’2)1},

where x1,x9 are the roots of the polynomial

v? —a(3p” — 29" — 29"+ p?) +p"* = 2p" — 2p% + 6p” — 2p° — 27 + p’
+Ha(p® = p*)(” — 20" + %) + (0" — p*) (" — 20° +p7),

L-spec(I'r) = {(0)1, (p° — p4)12(p4*1’2*1)7 (p° — p3)l1(p3fp271)7
(p5 _ p2)l1+l2—1}

and

5_p3 8 .7 . 6,.5 .4, 3
LE(FR) _ 2[(p°—p )(l1+pl2)+]()z;+pﬁ_l pS+p°—pr4p )1112}7

where Iy + lo(p+1) =p* + p+ 1.

]
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(b) If |Z(R)| = p?, then
Spec(Tr) = { (=o' + 97, (07, (5 =)'},
Q-spec(T'g) = {(p5 =P (0 - 2pt 4 PO (27 - 2104)1},
L-spec(Tn) = { (0)", (0" = p')" "1, (5" = ') |
and E(I'g) = LET(I'g) = LE(T'g) = 2(p° — p*).

Proof. (a) By Lemma 22(b)(i), Trx = (@* + p + 1)Kpp-1) or
lleﬁfl) Ulo K21y, when 4 + lip+1) = pP+p+1,if 1Z(R)| = p’
If T'p = (p* +p+1)K_p2) then Theorem 3.4 yields

Spec(Tn) = {(=p* + p2) 7, (071, (5 — ) },
L-spec(I'g) = {(0)1, (p° — p3)p5—2p2—p—1’ (p° — p2)p2+p}

and E(T'g) = LE(Tg) = 2(p° — p3). Here, [v(I'g)| = p° — p? and
I'p = Kp2ypi1p3—p2. Using Theorem 3.1(b), we have

Qr,(z) = (z — ( )+p p2>(p2+p+1)(p2fpfl)
X (x — p2) +2(p° — p?))Pr !
p —D
X<1 (p° —p)+2(p3—p2)>

=P = (0 = )
X (x— ( P —2p3))-

Therefore,
Qrspec(T) = { (57 = PP 2" 071, (07 — 208 + 242, (27 — 21},

— 8 . T_ 9.5 ,4 .2
Number of edges of I'g is &=L 212) P Therefore

le(T'g)| = pO=2p"—pP+ptp® _ pPPp"—2p04ptp® _ PP (P -1)(?-1)
e\l r)|l = .

2 2 2
Now,
2\6(FR)\'
5 3 ) 3 5 3
—p - =P —p" —p +p| =0,
[0(T'r)| | |
2le(T'r)|

5 3 2 3 2 3 2
p’—2p° +p° — '=—p+p =p —p
v(I'R)] ‘ ‘
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and
2le(I'R)] 5 3 5 3
2p° — 2p® — T4 = p’l=p"—p"
o | - P
Thus,
LE"(Tp) = (p° =2 —p—1) x 04 (p* +p) x (p° —p°) +p° = p’
=2(p" — p%)
If F_R = llK(ps_pz) U ZQK(p4_p2), then I'p = Kll.p3—p2,l2.p4—p2- This implies

[o(Tg)| = p° — p*.
Using Theorem 3.1(a), we have

2
Pr,(x) = x(ps—p2)_(l1+l2)H(x _|_pi)ai—1

i:

2 2 2
X Hx—i—pl Z H (x + )
i—1 =1

i=1,i#j
= o (gt = ) @ pt = p?)
X ((z+p* = p*)(@+p" —p*) = L(* — ) (@ +p' —p?)
—b(p' =)z +p’ =)
= 2P — (= ) = (07 - )

x(@?—x(p’—p' —p*+p*) — (p" —p° =P’ +p") (L + 1o —-1)).

Thus Spec(T'r) = {(0)1’5‘1’2‘11‘12, (P =P (p* = ") () (9:2)1}, where
x1, Ty are the roots of the polynomial

=z —p'=p*+p?) - = =P+l + - 1).

Using Theorem 3.1(b), we have

2
Qa;Pi
x 11—
( le - -r’)+ 2p¢>

3_ .2 4_ 2
—(x—p°—p)+p*—p )ll(p P 1)(:6 —(p° = p*) +p' — pZ)lz(p p =1
—p*) +2p° — 2p°)"(x — (p° — p*) + 2p" — 2p*)"



SPECTRUM AND ENERGY OF NON-COMMUTING GRAPHS 225

W (1 L(p® - p°) B L(p' —p°)
x—(p°—p*) +2p° =2 x—(p°—p?)+2p' —2p?

= (z— (" =) D@ = (p° = ph)) Y

—2p° + )" (z — (p° — 2p* + p?))"

<1 B L(p® — p?) B l(p* — p?) >
z—(p°—2p°+p°) x—(p°—2p"+p?)

= (z— (" =" )" D@ = (p° — ph)) Y

X (z— (" = 20" +p")" o — (0 = 2" + 1) (@),

where
flz) = 2® —x(3p° — 2p" — 2p” + p*)+ p'*— 2p" — 2p°+ 6p”
—2p° —2p° + p* + L(p® — p*)(P° — 2p* + p°)
+o(p* = p*)(p° — 20 + pP).
Thus,

Q-spec(I'p) = {(p5 — p3)l1(p37p2*1)7 (p5 — p4)12(104*p2*1)7

07 = 25" + 19" (0 — 2+ ) ) (o))

where x1, 9 are the roots of the polynomial f(z). Using Lemma 2.2(b)(i),
we have

Lspec(T) = { ()%, (57 — p?)h0° "), (pf — 2yt
Thus, Theorem 3.3 yields

L-spec(I'g) = {(0)1, (p° — phy®'=P*=1)_(pp — pAya®* =1 (p5 _ pz)zﬁzz—l}

Here [0(Tg)| = p° — p2, |e(Tg)| = E*=p*)(P*—D(1+pl2) 414 ¢0

2
2le(Cr)| _ (0°—p°)(Lit+plo)

[v(L'R)| p>+p+1

Therefore ) ;
5 4 2le(TR)[| (" —p)h
NPT S]

PP tp+ 1

p5 —p3 . 2le(T'g)| _ (p5 - 103>527
|v(T'R)] pP+p+1

P - p? = 2le(I'p)| _ P’ =)L+ (p+1)%)
[v(T'R)| pP+p+1
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and so
LE(Iy) = (p° = p*)(lh + ply) N (p* = p*)(p* — p* — Vil
f P Ap+l pPHp+1
P =) —p* = Dlly  (P* =)+ (p+1)%L) (L 41— 1)
+ 5 + : .
PP+p+1 pP+p+1

Consequently, we obtain the necessary expression.

(b) The expressions for Spec(I'g), L-spec(I'r), E(I'g) and LE(I'g) follow
from Lemma 2.2(b)(ii) and Theorem 3.4.

By Lemma 2.2(b)(ii) we have 'y = (p 4+ 1)K(u_». This implies

lv(Pr)| = p° — p* and T'r = K41 4. Using Theorem 3.1(b), we have

Qr,(z) = (z — (p° = p*) + p* — p*) P+ ="-1)

X (= (p° —p*) +2(p" = p°))""! (1 - (PP —pp?’)_f?(p“ - p3>>

= (x—(° =) TP o — (p° — 2"+ PP (2 — (20° — 2Y)).

Therefore, Q-spec(I'p) = {(p5 — "L () — opt 4 pRYP, (2p° — 2p4)1}.

— " .9 .8 7T, 6_,5,,3
Number of edges of I'y is E2—LIL=LP"  Therefore,

10 8 6 5 3 9 8 7 6 5 3 T (2
_ p=2p®4pS—p°+p p?—p®—p"+p°—p°+p* _ p'(@*-1)(p—1)
|€(FR)‘ — 2 - D) — D) .

Now,
2\6(F3)w
5 4 5 4 5) 4
e =P —p —p +p|=0,
o) || |
2le FR
00— 2t P — | (F )|':‘—p4+p3’=p4—p3
lv(I'g)|
and
Q‘G(FR)’ 5 4 5 4
2p° — 2p* — = |p® - p*| =p° —p*.
‘ o) |~ PP
Thus,
LET(TR) =@ —p*—p—1) x0+px (p* = p°) + p°> — p* =2(p° — p*).

L]
Theorem 3.11. Let |R| = p*q and Z(R) = {0}.
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(a) Suppose that “t € {p,q,p*,pq} and (t — 1) divides (p*q — 1)”. Then

(t—2)(p%q—1)

Spec(Tx) = {( f4 1) 1—1,<0>t—1,<p2q—t>1},

pqt

Q-spec(I'r) = {(p q—t)p D (plg — 2t 4 1)

(t—2)(p%q-1)

(2p q— 2t) }
L-spec(l'r) = {(0)1, (g~ 1) (P - 1) 1}
and E(T'g) = LE+(FR) — LE(TR) = 2(p2q —1).

(b) If (p = Dl + (g = Dl + (p* = Dls + (pg — Dla = p*q — 1, then
Spec(FR) — {(0)P2q—1—11—lz—13—l4’ (1 o p)ll_l, (1 _ Q)l2_1,

(=P (L= pg) !, (), (), ()", ()"},
where x1, T, x3, x4 are the roots of the polynomial
(x4+e)(x+ fHlx+g)(x+h)—lLelx+ f)(z+g)(x+h)
—Lf(z+e)(z+g)(x+h)—Lglx+e)(z+ f)lz+h)
—lih(z +e)(z + f)(z +9),
wheree=p—1, f=q—1,g=p>*—1and h=pq— 1,

Q-spec(Tn) = { (0a =)', (5 — )72, (pPq — p)*0" 2,
(p°q — p)" "2, (P*q — 2p+ )" (pPq — 20 + 1)" 7,
(P°q— 20"+ 1), (pPg — 2pq + 1), (21)",
(22)' ()", (20)'}.
where x1, T, x3, x4 are the roots of the polynomial

(= a)(a = B)( — ) — d) — h(p — Dlx — D)z — )z — d)

—ls(q = D(z = a)(z = ¢)(z — d) = B(p° — 1)(z — a)(z — b)(z — d)

—li(pg — 1)(z — a)(z = b)(z — ),

where a = p’q —2p+ 1, b = p’q — 29+ 1, ¢ = p’q — 2p*> + 1 and
d=p’q—2pq+1 and

L-spec(I'r) = {(0)1, (0*q — pg)"#72, (pq — p*)P Y,

(p2q _ q)12(9—2)7 (p2q _ p)ll(p_2)7 (p2q _ 1)l1+l2+l3+l4—1}.
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Proof. (a) The expressions for Spec(I'r), L-spec(I'r), FE(I'gr) and LE(I'g)
follow from Lemma 2.1(b)(i) and Theorem 3.4. By Lemma 2.1(b)(i), we have
T = pjg—llKH . This implies I'r = szq y Using Theorem 3.1(b), we

have

QFR()
= (2 — (PP — 1)+t — 1) (g — (g — 1)+ 2(1 — 1))

prq—1
X 11—
( iv—(p2q—1)+2(t—1)>
= (= (g — )T D (5 — (g — 2+ 1) (2 — (2p2q— 21)).
Therefore, Q-spec(I'r) = {(p2q—t)ptq =2 (p2q—2t + 1) (2p q—2t)! }
Number of edges of 'y is w. Thus,
le(Tg)| = (P*e-D(P*q=2) _ (P’¢-1)(t—2)

(P’q—1)(P°q—t) '

2 2 2
Now,
2le(I'g)|
2 2 2
—t— =|pq—t—pq+t| =0,
[v(T'R)| | |
2|€(FR)\|
2
prq—2t+1— =|—t+1=t—-1
[v(TR)]
and F )|
2p°q L =% —t] = pPg - t.
Thus, LE*(T < )xo+(pQﬂx(n—m+p%—t

ﬂpq—ﬂ
(b) Lemma 2.1(b)(ii) gives I'g = WK, 1 ULK, 1 Ul3Kyp 1 UlKy,—1. This
imphes PR Kll.p—l,lg.q 1,l3.p2—1,l4.pg—1-
Using Theorem 3.1(a), we have

4
PFR(ZU) — $(p2q_1)_(ll+l2+l3+l4)H(l‘ _'_pi)ai_l
=1
4
X H x""pz Za'jpj H x‘i‘pi)
=1 i1=1,i#j

— xp2q—1—l1—12—13—l4(x +p— 1)11—1($ +q— 1>l2—1
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X (z+p* = 1)z +pg— 1)
x((@+p-D@+q—1(+p" - 1)(z+pg—1)
—Lp—D@+qg—D(z+p*=1)(z+pg—1)

—lb(g—1)(z+p—1)(z+p*—1)(z+pg—1)
— (" =Dz +p—1)(z+q—1)(z+pg—1)
—L(pg—1)(z+p—1)(z+q—1)(z+p* - 1))

Thus,

Spec(l) = {01ttt (1)t (1= )

where x1, x9, 3, 4 are the roots of the polynomial

(x+e)z+ flz+g)(x+h)—lLelx+ f)lx+g)(x+h)
—lf(r+e)(x+g)(x+h)—lzg(z+e)(z+ f)(x+h)
—Lih(z +e)(z+ f)(z+g),

wheree=p—1, f=q—1,g=p*> —1and h = pqg — 1.
Using Theorem 3.1(b), we have

Qo) = [ = = 1) + ) V[ = (g = 1) + 20"

= (= (P’q—1)+p— )" (- (pPg— 1) + ¢ 1)

X ( (p%q —1) + p* — 1)13(192‘2)(:1: — (p2q — 1) + pg —1)lawa=2)
(= (pPqg—1)+2p — 2)"(z — (pPq — 1) + 2¢ — 2)"

X (x—(p°q —1) +2p" = 2)"(z — (p’qg — 1) + 2pg — 2)"

( hip—1) lr(g — 1)

X | 1— —
r—pPlq—1)+2p—2 z—(p’q—1)+2¢—2

B l(p* — 1) B li(pg — 1) )
r—(pPq—1)+2p* -2 x—(p*¢—1)+2pg—2

After simplification we get
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Qry(z)

= (z — (pPq — p))" "z — (p%q — )2 T (@ — (pPq — p})) TP

x (x — (pPq — pg)) 1P (x — pPq+ 2p — 1)h Yz — pPq + 2¢ — 1)}
x (. — pPq+2p* — 1) Yz — pPq + 2pg — 1)1}

x (@ = (g =2+ 1)@ = (g — 2+ 1))

(SC—( ¢ —2p* +1))(z — (P’q — 2pq + 1))
—h(p—1)(z = (pPq—2¢+1))(z — (0’ — 2p° + 1)) (x — (p°q — 2pg + 1))
—lo(g = V)(z = (pPq = 2p + 1)) (z — (p°q — 2p* + 1)) (z — (p°q — 2pg + 1))
—3(p* = Dz — (pPq—2p+ 1))z — (p°¢ — 2¢ + 1)) (z — (p*q — 2pg + 1))
—li(pg — D)@ = (PPg — 2p+ D& — (g — 20+ 1))(@ = (g — 2° + 1))).
Thus,

Q-spec(T'n) = { (0a = )", (g — @), (pPq — p)*0" 2,
(P*q —pg)" "7, (pPq — 2p + 1), (pPg — 2¢ + 1),
g —2p" + 1) (0% — 2pg + 1)
D' ()" (@9)', () },

where x1, x9, 3, 4 are the roots of the polynomial
(z —a)(z = b)(z —c)(x —d) —hp—1)(z —b)(z — c)(z — d)
— (g = Dz —a)(z — c)(x — d) = (p* — 1)(z —a)(z = b)(x — d)
— la(pq — 1)(z — a)(z — b)(z —¢),

where a = p’q—2p+1,b = p*q—2q¢+1, c = p?’q—2p*+1 and d = p?’q—2pg+1.
Using Lemma 2.1(b)(ii), we have

L-SpeC(F_R) — {(O)l1+l2+13+l47 (p o 1)(}?—2)11, (q . 1)((1_2)[2’
(p? — 1)(p2,2)137 (pg — 1>(pq2)l4}'
Thus, Theorem 3.3 yields

L-spec(Tr) = { (0%, (v%q — pa)/ "2, (pg — p?)0"2),

(r°q
(
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(pq = )20, (pPq — p)" 02, (pPg — 1)L

L]

Theorem 3.12. Let |R| = p>q with unity.
(a) If Z(R) has pq elements, then

Spec(I'r) = {(—p2q + pq)?, (0) PP (g — pQQ)l},
Q-spec(I'g) = {(qu — pq) VPl (g — 2p%q + pq)?,

(2p’q — 2p2Q)1},
Lspec(Tn)={ (0)", (' — p0) "0, (p 4+ 1) (% — pa))" }

and E(I'g) = LET(I'g) = LE(T'r) = 2(p*q — p*q).

(b) Suppose that Z(R) has p* elements.

(i) If “(p— 1) divides (pq — 1) 7, then

(pq—l)(pS—p2—1) 3 3 1
L0 T (g —p7) g
Q-spec(T'g) = {(p g —p*) TP (g 4 p? — 2p)

(2p*q — 2193)1},
1 3 3 (pq—l)(pg—p2—1) 3 2 pQ*l_l
L-spec(I'r) =< (0)°, (p°q —p°)  » 1+, (p’q—p°)»?

and E(Tp) = LE*(Tg) = LE(Tg) = 25%(q — 1).
(ii) If (¢ = 1) [ (pg — 1), then
(pa—1) (% q—p>~1)

SpeC(FR):{( —pPq+pA) L (0) ,(pgq—pQ)l},

—L(p*q—p*—

Spec(Tn) = {( ) E

Q-spec(I'g) = {(p q—p*q)" Y (pPq + p* — 2p%q) a7,
(2p°q — 2;.0261)1},
(pa=1)(P*a—p*~1) pg—1_
L-spec(T'g) = {(0)1, Pa—pv'e) =  ,(plq—p) 1}

and E(T'g) = LET(I'g) = LE(T'g) = ZpQ(&— q).
(ili) If pg—1= (-1l +(g—1)l, then I'r = L Kps_pp Ula K22 and




232 SHARMA AND NATH

Spec(I'r) =:{(O)ﬁw‘p141‘b,(p2——lﬁ)“‘l,(pz——zﬁq)b‘l,(xl)ﬂ(aa)l},
where x1,x9 are the roots of the polynomial
v* —x(p’q —p* = pPa+p?) — ¢ -’ —pla+p )L+ - 1),
Q-spec(I'r) = {(p3q-—-p3)h@ﬁp2”,(p3q-—-p2q)b0ﬁqp2”,
(P°q = 20° + p")" 1, (g — 20%q + p*) T,
(:Ul)la (xZ)l}v
where x1,x9 are the roots of the polynomial
z(3p°q — 2p°q — 2p° + p°) + p°¢* — 2p°q — 2p°¢°
+6p°q — 2p'q — 20" + p' + L(p* — ") (P’q — 20°q + p)
+Ha(p*q — ) (p°q — 2p° + p).
L-spec(T'g) = {(0)1,(p3q-—-pZQ)b“ﬂqp2”,(p3q-—-p3)h“ﬁp2”,
(p3q-—zﬁ)h+h_1}

and [
2(p*—p*)[(¢=1) (pl1+ql2)+(p*q—p*—1)(g—p) i L] ifp<q

LEUV”{%ﬁqpn@1MMﬂmf@ 1) (p-q)luly
- ifp > q.

Proof. (a) The expressions for Spec(I'g), L-spec(I'g), E(I'g) and LE(I'g)
follow from Lemma 2.2(c) and Theorem 3.4. By Lemma 2.2(c), we have
Tr = (p+ 1)K,2ypg- This implies [v(T'g)| = p*q — pg and T = K11 24 pg-
Using Theorem 3.1(b), we have
Qm@ﬁ=Cﬂ—@%—p®+p%—p®W”W“m”)
x (z = (p’q — pa) + 2(p"q — pg) """

p’q — pq

>< (1 )
r — (p3q — pq) + 2(p*q — pq)
p q—7p q))(p+1)(p q—pq—1)

X(x—@q—ﬂpq+MMWx—@ﬁq—hﬂM-

Therefore,

Qﬁmmﬂh)z{Qﬁq—p%ﬂ“”@%wfmiﬁq—Zﬁq+p®20@%—ﬁmﬁf}-
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(p+1)(P*q—pq) (P*q—pg—1)

Number of edges of I'y is 5 . Therefore,
3., 3., 1 1 2. 2. -1 2 1 5_ .3
le(Tg)| = (g pQ)(IQD ¢—pg—1) _ (p+D)(p7q pg)(p q—pg—1) _ ¢(p )2(p r)
o e(Tn)
2le FR
p’q—piq— T‘ = [p’¢ — p’q — p’q + p°q| =0,
2le FR
p’q — 2p*q + pqg — #| = |—p*q + pq| = p’q — pq
. ()
2le FR
|2p3q — 2p°q — T' = |p’q — p°q| = P’q - 1q.
[v(Tr)|
Thus,
LE*(Tr) = (p+ 1)(p*q —pq — 1) x 04 p x (p°q — pg) + p’q — pq
=2(p’q — pq).

(b) (i) The expressions for Spec(I'r), L-spec(I'g), E(I'g) and LE(I'g) fol-
low from Lemma 2.2(d)(i) and Theorem 3.4. By Lemma 2.2(d)(i), we have

Tr = %Kps - This implies I'r = Kp1 5. Using Theorem 3.1(b), we
have
pq—1
Qrp(7) = (z - ( Sq—p?) +pt - p?)a Y
x ( p?) +2(p° - p?)) T
pq—p
X [1—
( (p3q — p)+2(p3—p2)>
— (z — (PPg—p*) i @D
x (z — (pPq — 20 + 1)) ¥ (x — (20°q — 20%)).
Therefore,
pg—1/.3_ 2
Q-spec(I'g) = {(p3q —p?) T D (g — 2pP 4 p?) ot (2pq — 2p%)! }

2

Number of edges of T is Yep 2)(2793_]9 —U Therefore,

3 M2 3_2_1 32 3_2_1 3 .2 3 .3
‘e(pR”:(pqp)(gqp )_(pqp)(Qp p ):(pqp)Q(pqp)_

Now,

2le FR
plqg—p’ — M‘ = [p’q —p’ —pPg+p’| =0,
[v(TR)|
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ﬁﬂ&ﬂ‘

%—2ﬁ+ﬂﬁ—|(r = |-p’ +0°| =p’ = p*

e e(Ts)
2le FR
Pﬁq—%ﬁ——jr—NZW%—pﬂzp%—p?
[v(T'R)|
Thus,
pq—1 pqg—p
LEWFM==( 1@9—p-—Q>X0+< )X(ﬁ—p%+p%—p3
p— p—1
=2(p’q — p*).

(b) (ii) The expressions for Spec(I'r), L-spec(I'gr), E(I'r) and LE(I'g) follow
from Lemma 2.2(d)(ii) and Theorem 3.4. By Lemma 2.2(d)(ii), we have

Ty = %Kp 2. This implies I'p = K;;q_ 1 2q_p2- Using Theorem 3.1(b), we
have
Qm@%z@—( —p?) + pPg — pH) D
x )+ 2% — p*)) T
pq—p
x| 1—
( (P*q — p)+2@%—p%)

pg—1

— (z — (pPq — pPq)) T P

x (x — (P°q — 2p°q + p*)) ' (z — (2p°q — 2p%q)).

Therefore,

Q-spec(Tr) = { (PPa—p*q) "

1
pg—1 (

Pep- )@%—ﬂﬁq+ﬁ%@,@ﬁq—%ﬂﬁ%'

P*(p*q—p°—1)(pg—1)

Number of edges of I'p is 5 . Therefore,
le(Tg)| = (p3q7p2)(1293q7p2*1) _ p2(p2qu22*1)(pq*1) _ (p:‘quz)épgqu?q}.
Now,
ﬁq—ﬁq—%%?ﬂw=b%—p%—ﬁb+ﬁd=0,
pgq-2p2q%-p2—-%k%%kﬁl'Z:L—p2q4-p2|==p2q-p2
and

2le(T'R)|
23_22_ :3_2:3_2.
|pq P T P’ — p’q| = p’q — p°q
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Thus,
pg—1 g —q
LE*(Tg) = (P*q—p*—1) ) x 0+ x (p°q = %)
q—1 q—1
+p°q — p’q
= 2(p’q — p*q).

(b) (iii) Lemma 2.2(d)(iii) gives Tp = 51 K32 U 12Kz, 2. This implies
I'r = Kjy pp—p2 1y g
Using Theorem 3.1(a), we have

2
Pry() = 207" (2 4 py) !

1=1
2 2 2
X H + pz Zajpj H (37 + pz’)
=1 J=1 =1,

= P Tl (g B )Y (g P — pP)!

X <($ +p° = p)(x +p’q - p°)

— L’ = p) (e +pPq—p°) — L’ —p*) (@ +p’ - p2))

= 2P (g — (= )N = (07 - 7)) x f(w),
where f(z) = 2* —x(p*q—p* —p’¢+p*) — (P’ ¢—p° —p*q+p*) (L +12—1). Thus
Spec(T'g) = {(O)pgq—pz—ll—b’ (P2 — )L, (2 — pPg) Y, (1), (x2)1}7 where

x1, 9 are the roots of the polynomial f(x).
Using Theorem 3.1(b), we have

2

]

Qry(2) = [[(@ = @Pq —p°) +p) " V] [ (= — (0Pq — p?) + 2pi)
=1 1=1
2
% 1 . alpl
1 — (p*q — p?) + 2p;
=(z— (pPq—p*) +p* —p)h Y
x (z = (pPq — p*) + pq — p?) Y
x (x— (p°q —p°) +2p° = 2p")" (& — (P°q — p*) + 2p°q — 2p°)"
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y (1 -— L(p* —p°) l(p*q — p°) )

p3q—p?) + 20 —2p® @ — (p3q — p?) + 2p2q — 2p?
3.2 22
= (¢ — (pPq = ")V (@ — (g - pPg)) P
x (x — (pPq — 20" + p*)" Nz — (pPq — 2p°q + p*)> ' x f(2),
where
f(x) = 2% — 2(3pq — 2p*q — 20" + p*) + p°¢* — 2p°q — 2°¢* + 6p°¢
—2p'q —2p° + p* + L (p* — PP (PPq — 20%q + P?)
+lo(p°q — p°)(p°q — 2p° + p?).
Thus,
3_ .2 2 2
Q-Spec(FR) — {(p3q _p3>l1(p P 1)7 (p3q _qu)lz(p q—p 1)7

(pPq —2p° + )", (PP q — 2p%q + pH)" 7, (1), (552)1}’

where x1, x5 are the roots of the polynomial f(x).
Using Lemma 2.2(d)(iii), we have

L—spec(F_R) = {(Q)lﬁlz, (p3 _ p2)ll(p37p271), (p2q - p2>12(pqu21)}.

Thus,
Theorem 3.3 yields

L-spec(I'r) = {(0)1, (pPq — pq)2®* =D (3 — pB)al’-p*-1),
(pq — p2)11+l2—1}.

Here [v(T'r)| = p°q — p2, |e(TR)| = p4(1?—1)(<1—21)(pl1+qlz) and so

2le(Tr)| _ p*(p—1)(g=1)(pli+qls)

lv(Tr)] pg—1 :
Therefore
D — 2[e(T'g)| ‘ _ PP =1 —q)h
[v(L'r)| pg—1
P*—p*)(g—ph .
- {(p?’z};g)(z}q)ll7 1?” =
T ifp > g,

p*(q — 1)(g — p)ly
pqg —1

2|€(FR)\|
3 3
pq—p’ — -
[v(L'g)|
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{(pq p)(q Pl if p < q

p%

(P*q—p*) (p—q)l
pq—1

and p3q . p2 . 2|L6((1“F;$)|| _0 ((p—l)plqu'l(q—l) L)

If p < ¢, then we have

, ifp>gq,

p*(p—1)(¢ — 1)(ply + glo)

LE(Ty) =
(Tr) 7 =1

(p* = p*) (¢ — p)(P*q — p* — 1)1l

_|_
pq—1

(p*q — p*)(q¢ — p)(* — p* — 1)1l

_|_
pq—1

+p2((p — 1)+ (= 1))+ 1 —1)

pq—1

Consequently, we obtain the necessary expression.
If p > q, then we have

p*(p—1)(¢ — 1)(ply + ql2)

LE(Tg) =

pg—1
P’ =p*)(p — ) (*q —p* = Dl
_|_
pg—1
(P*q —p*)(p — )’ —p* = Dby
_|_
pg—1
+p2((p — 1%l 4 (¢ —1)%L) (L + 1 —1)
pg—1 '
Consequently, we obtain the necessary expression. ]

With the following theorem we come to an end of this section.

Theorem 3.13. If 51,59,...,S5, are the mnon-identical centralizers of
s€ R\ Z(R), where R is a finite CC-ring and |Z(R)| =1, then

L-spec(l's) = {<0>1, (I = 1SS0, (BRI = [Si)/SH2, (1R =) |

and LE(Tr) = 75 (IR = ()1 1S2) + (0 = 1)n?).
In particular, if |S\ |S1| = [Se| = -+ = |5y, then

Spec(Tr) = { (=151 +n)" . ()17, (n = 1)(IS] =)' .
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L-spec(Tr) = { (01, ((n = 1)(IS] = )"0, (n(|S] = )"~}
and E(Tr) = LE(Tr) = 2(n = 1)(|S] = n).
Proof. Lemma 2.3 gives ['p = Z_QlK 15,|—y and
Lspec(Tr) = { (0)" (|S1] = m) 1777 (5] = ) =t
Therefore, Theorem 3.3 yields

L-spec(T'r) = { (0)", (|R] =[S, (1R] = |$i])/S =,

(IR =)},
Again, [0(Tg)| = [R —n, | Bl = Y, [S)] — (n — 1) and
2e(Cr)| _ |RP=(Z)y 1S, +(n=1)n?
TR — [R[—7
Therefore, for e =1,2,...,n, we have
1 20e@p)l| _ i lSiPn(|Sil—n(n—1))=(ISil+n)|R]
I1RI - 15:] - 3| = -
and
\\m L 2|e<rR>|‘ SIS = (=2 — 2RIy
[v(Tr)] Rl —n '
Thus
LE('g)
IRE = (5L ISiP) + (0= 1)
|’ —n
- > i1 1S5 +n(1Si] = (n = 1)n) — |R[(n +1Si)
+ Sil —n—1 ’
> s1-0-1 ( e
"SR = (n—2)n* - 2|R
1) (SIS = (0200 = 2Rl
Rl —n

Consequently, we obtain the necessary expression.
If |S| = |Si| = [S2] = ... = [S,], then I'p = nK|g_,. Hence, Theorem 3.4
yields the result. [
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4. SOME CONSEQUENCES

Our findings, in the previous section, imply that I'r of the rings we analyze
are L-integral. Now, we determine whether I'g of the rings considered in this
paper are L-hyperenergetic.

Theorem 4.1. If % = Zy X Ly then LE(I'r) < LE(Kyry)); and hence
['r 7s not L-hyperenergetic.
Proof. Since |[v(I'g)| = (p* — 1)|Z(R)|, we have
LE(K ) = 20(6* = DIZ(R) = 1) = 2p(p — DI Z(R)].
Hence, Theorem 3.5 yields the result. [

As a consequence of Theorem 4.1, I'g of all the rings taken into considera-
tion in Theorem 3.6-3.8 are not L-hyperenergetic.

Theorem 4.2. Let |R| = p* with unity.

(a) Suppose that Z(R) has p elements. Then LE(I'r) < LE(Kyry)); and
hence I'g is not L-hyperenergetic and if Iy +l3(p+1) = p> +p+ 1, then
LE(T'gr) > LE(Kyry)); and hence 'y is L-hyperenergetic.

(b) If |Z(R)| = p?, then LE(TR) < LE(Kjry)); and hence Tg is not
L-hyperenergetic.

Proof. (a) Since [v(T'g)| = p* — p, LE(Kjyry)) = 2(p* — p — 1). Therefore,
Theorem 3.9(a) yields

LE(Kyry)) — LE(Tg) =2(p* —p—1)>0
and if [; +lo(p+ 1) = p*> +p+ 1, we have

LE(Tgr) — LE(Kjyrp)) = 2(p2+p+1)+2{(p6;§i;i41+p2)l1—(p4—p2)}12 -0

as we observe that the term, {(p® — p® — p* + p?)l1 — (p* — p*)}2 > 0, for all
p and hence the result follows.

(b) We have |v(T'g)| = p* — p*. Therefore LE(K,r,)) = 2(p* — p* — 1).
From Theorem 3.9(b), LE(I'g) = 2(p*—p*) < 2(p*—p*>—1), as p>—p*—1 > 0.
Consequently, we get the required result. ]

Theorem 4.3. Let R has unity, |R| = p° and Z(R) is not a field.

(a) Suppose that Z(R) has p* elements. Then LE(T'g) < LE(K|yry)); and
hence T'g is not L-hyperenergetic and if Iy +l2(p+1) = p> +p+1, then
LE(T'gr) > LE(Kyry)); and hence 'y is L-hyperenergetic.
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(b) If |Z(R)| = p*, then LE(T'r) < LE(K|g—z(r)); and hence 'y is not
L-hyperenergetic.
Proof. Since Z(R) is not a field, |Z(R)| = p* or |Z(R)| = p>.
Case 1: |Z(R)| = p?
We have |v(T'g)| = p° — p*. Therefore LE(K ,r,) = 2(p° —p* —1). Theorem
3.10(a), yields
LE(Kyrp) — LE(Tg) =2(p* —p*— 1) >0
and if Iy + lr(p+ 1) = p? + p+ 1, we have
LE('r) — LE(Kyry))
2P+ 20 +p+1)
P +p+1
2{(0° —p" = p" = pYh + L —p°) + (Pl + )}
p’+p+1
Pt —p —p?—p—1)+ 2 + 20 +p+1
pPP+p+1
>0 ( since p* —p* —p> —p—1>0 for all p).

_|_

> ( since ly,05 > 1)

Hence the result follows.

Case 2: |Z(R)| = p°
We have |v(T'g)| = p° — p®. Therefore LE(K| ( )|) 2(p° — p* — 1). From
Theorem 3.10(b), LE(Tg) = 2(p° — p?) < 2(p° 1),as pt—p*—1>0.
Consequently, we get the required result. ]

Theorem 4.4. If “|R| = p?’q and Z(R) = {0} and t € {p,q,p* pq} and
(t—1)| (p>q — 1)” then T'g is not L-hyperenergetic.

Proof. Since [v(T'r)| = p*q¢ — 1, LE(Kjyry) = 2(»°q — 2). We know that
p*q —t < p*q — 2 always, where t € {p,q,p* pq}. Therefore, by Theorem
3.11(a) the result follows. O
Theorem 4.5. Let |R| = p*q with unity.

(a) Then LE(I'r) < LE(K|yry)) whenever |Z(R)| = pq; and hence I'g is
not L-hyperenergetic.
(b) If |Z(R)| = and
(i) (p— 1) divides (pqg — 1) or (¢ — 1) divides (pq — 1), then I'g is not
L-hyperenergetic.
(ii)) pg — 1 = (p— Dly + (¢ — 1)y, where p # 2 and q # 3, then 'y is
L-hyperenergetic.
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Proof. Since |Z(R)| is not a prime, |Z(R)| = pq or |Z(R)| = p?

Case 1: |Z(R)| = pq
Since |v(T'r)| = p*q — pg, LE(Kyry) = 2(p°¢ — pg — 1). From Theorem
3.12(a), LE(TR) = 2(p*q — p*q) < 2(p*’q—pq—1), as p*¢—pg—1 > 0. Hence
the result follows.

Case 2: |Z(R) :p
We have [v(T'g)| = p*q — p*. Therefore LE(K ) = 2(p*°q — p* — 1).

Subcase 2.1: If (p — 1) | ( pq — 1), then from Theorem 3.12(b)(i),
LE(TR)=2(p’¢ —p’) <2(p’q—p* — 1), as p* = p* = 1> 0.

Subcase 2.2: If (¢ — 1) | (pg — 1), then from Theorem 3.12(b)(ii),
LE(TRr)=2(p’¢ —p’q) <2(p’q—p* —1),as p’q —p° — 1> 0.

Subcase 2.3: If pg—1 = (p—1)l1+(¢—1)ly and p < ¢, then from Theorem
3.12(b)(iii), we have

LE(Tg) — LE(Kjury)
 2(pg — 1)(1 +p* — pq)

pq —1

+2192(19 —1)(g—p)l{(p’q—p*— Dl +1}
pqg—1

> (pg — (1 +p* — pQQ);qu(lp —1)(q — p)(p*q — p%) (since 1.1y > 1)
L Pa=Dp*p—D(g—p) = (pg = 1)]
- pq—1
o Pla=Dplp—=1)(g—p) =4
- pq—1
. Pa=Dlplg—p) —d
- pg—1

> 0,

since pg — p?> — ¢ > 0 for all p and g such that p # 2 and ¢ # 3.
If pg—1=(p—1)l1 + (¢ —1)ly and p > ¢, then from Theorem 3.12(b)(iii),
we have

LE(T'gr) — LE(Kyrp))

_ 2(pg — 1)1 +p* —p’)
pg—1
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+2p2(q —1)(p— @)lo{(p* —p* — 1)l1 + 1}

pq—1
> (pg — (1 +p? —p?’);;pj(lq —1)(p — q)(p* — p?) (since Iy, 1y > 1)
P =D (p—a)(g=1) = (pg = 1)]
- pq —1
P =Dl —a@—1) -4
- pqg —1
. Pe=1Dlplp—q —d
- pqg—1
>0,

since p?> —pg—q > 0, for all p and ¢ such that p # 2 and ¢ # 3. This concludes
the proof. ]

The following theorem gives us some finite non-commutative rings R
for which I'p is integral, Q-integral but not hyperenergetic as well as Q-
hyperenergetic.

Theorem 4.6. I'p is integral, Q-integral but not hyperenergetic and Q-
hyperenergetic if

(a) % is isomorphic to Z, X Z,.
(b) |R| = p* with unity and
(i) |[Z(R)| = p such that T'p = Ky pi1 2 p-
(i) 12(7)| =
(c) |R| = p° with umty and
(i) \Z(R)| 2 such that Tp = K2y pi19p2-
i) |2(R)] =
(d) |R| = p?’q and Z(R) = {0} such thatt € {p,q,p? pq} and

(t=1) | (p°g—1).
(e) |R| = p3q with unity and
(i) [Z(R)| = pg.
(i) [Z(R)| = p* such that (p— 1) | (pg — 1) or (¢ —1) | (pg —1).

Proof. For the aforementioned rings R, Spec(I'z) and Q-spec(I'p) contain
only integers so 'y is integral as well as Q-integral. Also,

LET(I'g) = LE(T'g) = E(I'R).
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Therefore, in view of Theorems 4.1-4.5, I'p is not hyperenergetic and Q-
hyperenergetic. ]

Finally we wrap up this paper noting that as a consequence of Theorem
4.6, I'r of all the rings taken into consideration in Theorem 3.6-3.8 are
integral, Q-integral but not hyperenergetic as well as Q-hyperenergetic.
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