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LAPLACIAN SPECTRUM AND ENERGY OF NON-COMMUTING
GRAPHS OF FINITE RINGS

M. Sharma and R. K. Nath∗

Abstract. We compute spectrum, energy, Laplacian spectrum/energy and
signless Laplacian spectrum/energy of non-commuting graphs of certain finite
non-commutative rings. In particular, we consider finite rings R such that
|R| = p2, p3, p4, p5, p2q and p3q, where p and q are primes. Further, we consider
n-centralizer finite rings for n = 4, 5, and p+ 2; more generally, finite rings with cen-
tral quotients isomorphic to Zp × Zp. Our computations reveal that non-commuting
graphs of these rings are L-integral. We also determine whether non-commuting
graphs of these rings are integral, Q-integral, hyperenergetic, L-hyperenergetic or
Q-hyperenergetic.

1. Introduction
An undirected graph ΓR on the set of vertices R \Z(R), where R is a finite

non-commutative ring and Z(R) is the center of R, is called non-commuting
graph of R if two vertices u ̸= v are adjacent whenever uv ̸= vu. Erfanian,
Khashyarmanesh and Nafar [6] began researching non-commuting graphs of
finite rings. However, in case of finite groups, non-commuting graphs were
considered by Neumann [12] in 1976 while answering a question raised by
Erdös. Recent results on ΓR can be found in [3]. In this article, we compute
spectrum, energy, Laplacian spectrum, Laplacian energy, signless Laplacian
spectrum and signless Laplacian energy of ΓR for certain classes of finite
rings. As a consequence of our results we determine whether ΓR is integral,
L-integral, Q-integral, hyperenergetic, L-hyperenergetic or Q-hyperenergetic
for the rings considered in Section 3. Throughout the paper, R

Z(R) denotes
an additive quotient group and p, q denote distinct primes. It is worth
mentioning that Laplacian spectrum and signless Laplacian spectrum of zero
divisor graph of the ring Zn for some n were computed in [15] and [13, 14]
respectively.

Let G be a finite graph with e(G) as the set of edges and v(G) as the set of
vertices. The spectrum of G denoted by Spec(G) is the set
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{(α1)
a1, (α2)

a2, . . . , (αn)
an},

where αi’s represent the eigenvalues of A(G) (adjacency matrix of G) and ai’s
are their multiplicities for 1 ≤ i ≤ n. If αi’s are integers then G is said to be
integral. We have

E(G) :=
n∑

i=1

ai|αi|

which is the energy of G. “If E(G) > E(K|v(G)|) = 2(|v(G)| − 1) then G is
called hyperenergetic”. Gutman [8] and Walikar et al. [18] introduced this
class of graphs in 1999.

Let D(G) be the degree matrix of G. Then the Laplacian matrix of G is
given by L(G) = D(G) − A(G). The Laplacian spectrum of G denoted by
L-spec(G) is the set {(β1)b1, (β2)b2, . . . , (βm)bm} where βj’s are the eigenvalues
of L(G) and bj’s are their multiplicities for 1 ≤ j ≤ m. If βj’s are integers
then G is said to be L-integral. We have

LE(G) :=
m∑
j=1

bj

∣∣∣∣βj − 2|e(G)|
|v(G)|

∣∣∣∣ ,
the Laplacian energy of G. “If LE(G) > LE(K|v(G)|) = 2(|v(G)| − 1), then G
is called L-hyperenergetic”.

Again, the signless Laplacian matrix of G is defined by
Q(G) = D(G) + A(G).

The signless Laplacian spectrum of G denoted by Q-spec(G) is the set
{(γ1)c1, (γ2)c2, . . . , (γl)cl}, where γk’s are the eigenvalues of Q(G) and ck’s are
their multiplicities for 1 ≤ k ≤ l. If γk’s are integers then G is said to be
Q-integral. We have

LE+(G) :=
l∑

k=1

ck

∣∣∣∣γk − 2|e(G)|
|v(G)|

∣∣∣∣ ,
the signless Laplacian energy of G. “If LE+(G) > LE+(K|v(G)|) = 2(|v(G)|−1)
then G is called Q-hyperenergetic”. These classes of graphs were considered
in [7].

2. Preliminary results
Let H1 and H2 be two graphs such that v(H1) ∩ v(H2) = ∅. Then

H = H1 ⊔H2 is the graph with
v(H) = v(H1) ∪ v(H2) and e(H) = e(H1) ∪ e(H2).
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Throughout this paper we write mKn = Kn ∪ · · · ∪Kn︸ ︷︷ ︸
m-times

, where Kn is the

complete graph and |v(Kn)| = n. Results on the complement of ΓR were
obtained in [4, 7, 11, 16, 17]. Among those, the following results will be used
in subsequent sections.

Lemma 2.1. Let R be a ring.
(a) If R

Z(R)
∼= Zp ×Zp then ΓR = (p+1)K(p−1)η, where η = |Z(R)|. (See [4,

Theorem 2.4].)
(b) Let |R| = p2q and Z(R) = {0}.

(i) If “t ∈ {p, q, p2, pq} and (t − 1) divides (p2q − 1)”, then

ΓR = p2q−1
t−1 Kt−1 and L-spec(ΓR) =

{
(0)

p2q−1
t−1 , (t− 1)

(p2q−1)(t−2)
t−1

}
. (See

[17, Theorem 2.9(i)] and [7, Theorem 2.5(a)].)
(ii) If (p− 1)l1 + (q − 1)l2 + (p2 − 1)l3 + (pq − 1)l4 = p2q − 1, then

ΓR = l4Kpq−1 ⊔ l3Kp2−1 ⊔ l2Kq−1 ⊔ l1Kp−1

and

L-spec(ΓR) =
{
(0)l1+l2+l3+l4, (p− 1)(p−2)l1, (q − 1)(q−2)l2,

(p2 − 1)(p
2−2)l3, (pq − 1)(pq−2)l4

}
.

(See [17, Theorem 2.9(ii)] and [7, Theorem 2.5(b)].)

Lemma 2.2. Suppose that R is a ring with unity.
(a) Let |R| = p4.

(i) If Z(R) has p elements then ΓR = (1 + p + p2)Kp(p−1) or
l1Kp(p−1) ⊔ l2Kp(p2−1) and L-spec(ΓR) =

{
(0)p

2+p+1, (p2 − p)p
4−p2−2p−1

}
or {

(0)l1+l2, (p2 − p)(p
2−p−1)l1, (p3 − p)(p

3−p−1)l2
}

respectively, where p2 + p + 1 = l1 + (p + 1)l2. (See [16, Theorem 2.5]
and [7, Theorem 2.2(a)].)
(ii) If Z(R) has p2 elements then ΓR = (p + 1)K(p3−p2). (See [16,
Theorem 2.5] and [7, Theorem 2.2(b)].)

(b) Let |R| = p5 and Z(R) is not a field.
(i) If Z(R) has p2 elements then ΓR = (1 + p + p2)Kp2(p−1) or
l1Kp2(p−1) ⊔ l2Kp2(p2−1) and
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L-spec(ΓR) =
{
(0)p

2+p+1, (p3 − p2)p
5−2p2−p−1

}
or {

(0)l1+l2, (p3 − p2)(p
3−p2−1)l1, (p4 − p2)(p

4−p2−1)l2
}

respectively, where p2 + p+ 1 = l1 + (p+ 1)l2. (See [16, Theorem 2.7]
and [7, Theorem 2.3(a)].)
(ii) If Z(R) has p3 elements then ΓR = (p + 1)K(p4−p3). (See [16,
Theorem 2.7] and [7, Theorem 2.3(b)].)

(c) If |R| = p3q and Z(R) has pq elements, then ΓR = (p+ 1)Kp2q−pq and

L-spec(ΓR) =
{
(0)p+1, (p2q − pq)(p+1)(p2q−pq−1)

}
.

(See [17, Theorem 2.12(iv)] and [7, Theorem 2.6].)
(d) Let |R| = p3q and Z(R) has p2 elements. Then

(i) ΓR = pq−1
p−1 Kp3−p2 and

L-spec(ΓR) =

{
(0)

pq−1
p−1 , (p3 − p2)

(pq−1)(p3−p2−1)
p−1

}
whenever (p − 1) divides (pq − 1). (See [17, Theorem 2.12(i)] and [7,
Theorem 2.7(a)].)
(ii) ΓR = pq−1

q−1 Kp2q−p2 and

L-spec(ΓR) =

{
(0)

pq−1
q−1 , (p2q − p2)

(pq−1)(p2q−p2−1)
q−1

}
whenever (q − 1) divides (pq − 1). (See [17, Theorem 2.12(ii)] and [7,
Theorem 2.7(b)].)
(iii) ΓR = l1Kp3−p2 ⊔ l2Kp2q−p2 and

L-spec(ΓR)=
{
(0)l1+l2, (p3 − p2)l1(p

3−p2−1), (p2q − p2)l2(p
2q−p2−1)

}
whenever pq − 1 = (p − 1)l1 + (q − 1)l2. (See [17, Theorem 2.12(iii)]
and [7, Theorem 2.7(c)].)

A class of non-commutative rings R, introduced by Erfanian et al. in [6],
is referred to as CC-ring if the centralizers CR(y) are commutative whenever
y ∈ R \ Z(R).

Lemma 2.3 ([4, page 3]). If S1, S2, . . . , Sn are the non-identical centraliz-
ers of s ∈ R \ Z(R), where R is a finite CC-ring and |Z(R)| = η, then
ΓR =

n
⊔
i=1

K|Si|−η and

L-spec(ΓR) = {(0)n, (|S1| − η)|S1|−η−1, . . . , (|Sn| − η)|Sn|−η−1}.
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3. Various spectrum and energies
The following results will help us to compute spectrum, Laplacian spectrum

and signless Laplacian spectrum of complete r-partite graph in the succeeding
sections.

Theorem 3.1 ([19, Corollary 2.3] and [20, Corollary 2.2]). Let G be a com-
plete r-partite graph Kp1,p2,...,pr = Ka1.p1,a2.p2,...,as.ps on n vertices. Then

(a) the characteristics polynomial of A(G) is

PG(x) := xn−r
s∏

i=1

(x+ pi)
ai−1

 s∏
i=1

(x+ pi)−
s∑

j=1

ajpj

s∏
i=1,i ̸=j

(x+ pi)

 .

(b) the characteristics polynomial of Q(G) (Q-polynomial) is

QG(x) :=
s∏

i=1

(x− n+ pi)
ai(pi−1)

s∏
i=1

(x− n+ 2pi)
ai

(
1−

s∑
i=1

aipi
x− n+ 2pi

)
.

The following well-known result gives the spectrum of a strongly regular
graph.

Theorem 3.2. Let H be a strongly regular graph with parameters (k, λ, µ),
then

Spec(H)=

{
(k)1,

(
λ−µ−

√
(λ−µ)2+4(k−µ)

2

)n1

,

(
λ−µ+

√
(λ−µ)2+4(k−µ)

2

)n2
}
,

where n1 =
1
2

(
|v(H)| − 1 + 2k+(|v(H)|−1)(λ−µ)√

(λ−µ)2+4(k−µ)

)
and

n2 =
1
2

(
|v(H)| − 1− 2k+(|v(H)|−1)(λ−µ)√

(λ−µ)2+4(k−µ)

)
.

Theorem 3.3. [10, Theorem 3.6] For any graph H, if
L-spec(H) =

{
(β1)

b1, (β2)
b2, . . . , (βm)

bm
}

where β1 < β2 < · · · < βm, then

L-spec(H) =
{
(0)1, (|v(H)| − βm)

bm, (|v(H)| − βm−1)
bm−1,

(|v(H)| − βm−2)
bm−2, . . . , (|v(H)| − β1)

b1−1
}
.

We arrive at the following conclusion as a result of Theorems 3.2–3.3.

Theorem 3.4. If H = mKn, then
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Spec(H) =
{
(−n)m−1, (0)(n−1)m, ((m− 1)n)1

}
,

L-spec(H) =
{
(0)1, ((m− 1)n)m(n−1), (mn)m−1

}
and E(H) = LE(H) = 2n(m− 1).

Proof. If H = mKn then it is a strongly regular graph where |v(H)| = mn,
k = (m − 1)n = µ, λ = (m − 2)n. We have λ − µ = −n, k − µ = 0 and so√

(λ− µ)2 + 4(k − µ) = n. Therefore,
λ−µ−

√
(λ−µ)2+4(k−µ)

2 = −n,
λ−µ+

√
(λ−µ)2+4(k−µ)

2 = 0

and
2k+(|v(H)|−1)(λ−µ)√

(λ−µ)2+4(k−µ)
= 2m−mn− 1.

Hence, Spec(H) =
{
(−n)m−1, (0)(n−1)m, ((m− 1)n)1

}
(by Theorem 3.2) and

so E(H) = (m− 1)| − n|+ 0 + n|m− 1| = 2n(m− 1).
Since L-spec(H) =

{
(0)m, (n)m(n−1)

}
, by Theorem 3.3 it follows that

L-spec(H) =
{
(0)1, ((m− 1)n)m(n−1), (mn)m−1

}
.

We have 2|e(H)|
|v(H)| = 2

mn

(
mn(mn−1)

2 − mn(n−1)
2

)
= (m − 1)n. If follows that

|0−n(m−1)| = n(m−1), |n(m−1)−n(m−1)| = 0 and |mn−(m−1)n| = n.
Hence, LE(H) = n(m− 1) + 0 + n(m− 1) = 2n(m− 1). □
Theorem 3.5. If R

Z(R)
∼= Zp × Zp and |Z(R)| = η, then

Spec(ΓR) =
{
(−η(p− 1))p, (0)η(p

2−1)−p−1, (ηp(p− 1))1
}
,

Q-spec(ΓR) =
{
((p2 − p)η)(p

2−1)η−p−1, ((p− 1)2η)p, ((2p2 − 2p)η)1
}
,

L-spec(ΓR) =
{
(0)1, (ηp(p− 1))η(p

2−1)−p−1, (η(p2 − 1))
p
}

and E(ΓR) = LE+(ΓR) = LE(ΓR) = 2p(p− 1)η.

Proof. By Lemma 2.1(a), we have ΓR = (p + 1)K(p−1)η. This implies
|v(ΓR)| = (p2 − 1)η and ΓR = Kp+1.(p−1)η. Therefore, Theorem 3.4 leads
to the expression of Spec(ΓR), L-spec(ΓR), E(ΓR) and LE(ΓR). Using The-
orem 3.1(b), we have
QΓR

(x) = (x− (p2 − 1)η + (p− 1)η)(p+1)((p−1)η−1)
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× (x− (p2 − 1)η + 2(p− 1)η)p+1

(
1− (p2 − 1)η

x− (p2 − 1)η + 2(p− 1)η

)
= (x− p(p− 1)η)(p

2−1)η−p−1(x− (p− 1)2η)p(x− 2p(p− 1)η).

Thus,

Q-spec(ΓR) =
{
((p2 − p)η)(p

2−1)η−p−1, ((p− 1)2η)p, ((2p2 − 2p)η)1
}

.

Number of edges of ΓR is (p−1)(p2−1)η2−(p2−1)η
2 . Therefore,

|e(ΓR)| = (p2−1)2η2−(p2−1)η
2 − (p−1)(p2−1)η2−(p2−1)η

2 = p(p−1)(p2−1)η2

2 .

Now, ∣∣∣∣p(p− 1)η − 2|e(ΓR)|
|v(ΓR)|

∣∣∣∣ = ∣∣p(p− 1)η − (p2 − p)η
∣∣ = 0,∣∣∣∣(p− 1)2η − 2|e(ΓR)|

|v(ΓR)|

∣∣∣∣ = |(1− p)η| = (p− 1)η

and ∣∣∣∣2p(p− 1)η − 2|e(ΓR)|
|v(ΓR)|

∣∣∣∣ = ∣∣(p2 − p)η
∣∣ = (p2 − p)η.

Therefore,

LE+(ΓR) = ((p2 − 1)η − p− 1)× 0 + p× (p− 1)η + (p2 − p)η = 2p(p− 1)η

□

The following results give various spectra and energies of ΓR for some n-
centralizer rings (see [1, 2, 5]).

Theorem 3.6. Let R be a finite n-centralizer ring and |Z(R)| = η.
(a) If n = 4, then

Spec(ΓR) =
{
(−η)2, (0)3η−3, (2η)1

}
,

Q-spec(ΓR) =
{
(2η)3η−3, (η)2, (4η)1

}
,

L-spec(ΓR) =
{
(0)1, (2η)3η−3, (3η)2

}
and E(ΓR) = LE+(ΓR) = LE(ΓR) = 4η.
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(b) If n = 5, then

Spec(ΓR) =
{
(−2η)3, (0)8η−4, (6η)1

}
,

Q-spec(ΓR)=
{
(6η)8η−4, (4η)3, (12η)1

}
,

L-spec(ΓR)=
{
(0)1, (6η)8η−4, (8η)3

}
and E(ΓR) = LE+(ΓR) = LE(ΓR) = 12η.

(c) If n = p+ 2 and |R| = pk for k ∈ N, then

Spec(ΓR) =
{
(−(p− 1)η)p, (0)(p

2−1)η−p−1, ((p2 − p)η)1
}
,

Q-spec(ΓR)=
{
((p2− p)η)(p

2−1)η−p−1, ((p− 1)2η)p, ((2p2− 2p)η)1
}
,

L-spec(ΓR) =
{
(0)1, (η (p2 − p))

η (p2−1)−p−1
, (η (p2 − 1))

p
}

and E(ΓR) = LE+(ΓR) = LE(ΓR) = 2p(p− 1)η.

Proof. If n = 4, then R
Z(R)

∼= Z2 × Z2 (conf. [2, Theorem 3.2]) and if n = 5,
then R

Z(R)
∼= Z3 × Z3 (conf. [2, Theorem 4.3]). Further, if |R| = pk and

n = p + 2, then R
Z(R)

∼= Zp × Zp (conf. [2, Theorem 2.12]). Therefore,
Theorem 3.5 leads to the conclusion. □
Theorem 3.7. Let Pr(R) be the commuting probability of R and |Z(R)| = η.

(a) If Pr(R) = 5
8, then

Spec(ΓR) =
{
(−η)2, (0)3η−3, (2η)1

}
,

Q-spec(ΓR) =
{
(2η)3η−3, (η)2, (4η)1

}
,

L-spec(ΓR) =
{
(0)1, (2η)3η−3, (3η)2

}
and E(ΓR) = LE+(ΓR) = LE(ΓR) = 4η.

(b) If Pr(R) = p2+p−1
p3 , where p is the smallest prime divisor of |R|, then

Spec(ΓR) =
{
(−η(p− 1))p, (0)η(p

2−1)−p−1, (ηp(p− 1))1
}
,

Q-spec(ΓR)=
{
((p2 − p)η)(p

2−1)η−p−1, ((p− 1)2η)p, ((2p2 − 2p)η)1
}
,

L-spec(ΓR) =
{
(0)1, (ηp (p− 1))η (p

2−1)−p−1, (η (p2 − 1))
p
}

and E(ΓR) = LE+(ΓR) = LE(ΓR) = 2p(p− 1)η.
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Proof. We have R
Z(R)

∼= Z2 × Z2 and Zp × Zp if Pr(R) = 5
8 and p2+p−1

p3 (see
Theorems 1 and 3 of [9], in the second case p is assumed to be the smallest
prime divisor of |R|). Therefore, Theorem 3.5 leads to the conclusion. □
Theorem 3.8. Let R be a non-commutative ring.

(a) If |R| = p2, then

Spec(ΓR) =
{
(−(p− 1))p, (0)p

2−p−2, (p(p− 1))1
}
,

Q-spec(ΓR) =
{
(p2 − p)p

2−p−2, ((p− 1)2)p, (2p2 − 2p)1
}
,

L-spec(ΓR) =
{
(0)1, (p(p− 1))p

2−p−2, (p2 − 1)
p
}

and E(ΓR) = LE+(ΓR) = LE(ΓR) = 2p(p− 1).
(b) If |R| = p3 with unity, then

Spec(ΓR) =
{
(p− p2)p, (0)p

3−2p−1, (p3 − p2)1
}
,

Q-spec(ΓR) =
{
(p3 − p2)p

3−2p−1, (p(p− 1)2)p, (2p3 − 2p2)1
}

L-spec(ΓR) =
{
(0)1, (p3 − p2)

p3−2p−1
, (p3 − p)

p
}

and E(ΓR) = LE+(ΓR) = LE(ΓR) = 2p2(p− 1).

Proof. Note that |Z(R)| = 1 if |R| = p2 and |Z(R)| = p if |R| = p3 with unity
respectively. In both the cases R

Z(R)
∼= Zp×Zp. Therefore, Theorem 3.5 leads

to the conclusion. □
Now we compute various spectra and energies of ΓR for higher order finite

non-commutative ring.

Theorem 3.9. Let |R| = p4 with unity.
(a) Suppose that Z(R) has p elements. Then

Spec(ΓR) =
{
(−p(p− 1))p

2+p, (0)p
4−p2−2p−1, (p4 − p2)1

}
,

Q-spec(ΓR) =
{
(p4 − p2)p

4−p2−2p−1, (p4 − 2p2 + p)p
2+p, (2p4 − 2p2)1

}
,

L-spec(ΓR) =
{
(0)1, (p4 − p2)p

4−p2−2p−1, (p4 − p)p
2+p
}

and E(ΓR) = LE+(ΓR) = LE(ΓR) = 2p2(p2 − 1) or
Spec(ΓR)=

{
(0)p

4−p−l1−l2, (p−p2)l1−1, (p− p3)l2−1, (x1)
1, (x2)

1
}

,
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where x1, x2 are the roots of the polynomial
x2 − x(p4 − p3 − p2 + p)− (p5 − p4 − p3 + p2)(l1 + l2 − 1),

Q-spec(ΓR) =
{
(p4 − p2)l1(p

2−p−1), (p4 − p3)l2(p
3−p−1),

(p4 − 2p2 + p)l1−1, (p4 − 2p3 + p)l2−1, (x1)
1, (x2)

1
}
,

where x1, x2 are the roots of the polynomial
x2 − x(3p4 − 2p3 − 2p2 + p) + p8 − 2p7 − 2p6 + 6p5 − 2p4 − 2p3

+p2 + l1(p
2 − p)(p4 − 2p3 + p) + l2(p

3 − p)(p4 − 2p2 + p),

L-spec(ΓR) =
{
(0)1, (p4−p3)l2(p

3−p−1), (p4−p2)l1(p
2−p−1), (p4−p)l1+l2−1

}
and LE(ΓR) =

2
p2+p+1

(
(p4−p2)(l1+pl2)+(p6−p5−p4+p2)l1l2

)
, where

l1 + l2(p+ 1) = p2 + p+ 1.
(b) Suppose that Z(R) has p2 elements. Then

Spec(ΓR) =
{
(−p3 + p2)p, (0)p

4−p2−p−1, (p4 − p3)1
}
,

Q-spec(ΓR) =
{
(p4 − p3)p

4−p2−p−1, (p4 − 2p3 + p2)p, (2p4 − 2p3)1
}
,

L-spec(ΓR) =
{
(0)1, (p4 − p3)p

4−p2−p−1, (p4 − p2)p
}

and E(ΓR) = LE+(ΓR) = LE(ΓR) = 2p(p3 − p2).
Proof. (a) Lemma 2.2(a)(i) gives ΓR = (1 + p + p2)K(p2−p) or
l1K(p2−p) ∪ l2K(p3−p), when l1 + l2(p+ 1) = p2 + p+ 1.

If ΓR = (p2 + p+ 1)K(p2−p) then by Theorem 3.4 we have

Spec(ΓR) =
{
(−p2 + p)p

2+p, (0)p
4−p2−2p−1, (p4 − p2)1

}
,

L-spec(ΓR) =
{
(0)1, (p4 − p2)p

4−p2−2p−1, (p4 − p)p
2+p
}

and E(ΓR) = LE(ΓR) = 2p2(p2 − 1). Here, |v(ΓR)| = p4 − p and
ΓR = Kp2+p+1.p2−p. Using Theorem 3.1(b), we have

QΓR
(x) = (x− (p4 − p) + p2 − p)(p

2+p+1)(p2−p−1)

× (x− (p4 − p) + 2(p2 − p))p
2+p+1

(
1− p4 − p

x− (p4 − p) + 2(p2 − p)

)
= (x− (p4 − p2))p

4−p2−2p−1(x− (p4 − 2p2 + p))p
2+p(x− (2p4 − 2p2)).

Therefore,
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Q-spec(ΓR) =
{
(p4 − p2)p

4−p2−2p−1, (p4 − 2p2 + p)p
2+p, (2p4 − 2p2)1

}
.

Number of edges of Γc
R is p6−p5−p4−p3+p2+p

2 . Therefore,

|e(ΓR)| = p8−2p5−p4+p2+p
2 − p6−p5−p4−p3+p2+p

2 = p3(p3−1)(p2−1)
2 .

Now, ∣∣∣∣p4 − p2 − 2|e(ΓR)|
|v(ΓR)|

∣∣∣∣ = ∣∣p4 − p2 − p4 + p2
∣∣ = 0,∣∣∣∣p4 − 2p2 + p− 2|e(ΓR)|

|v(ΓR)|

∣∣∣∣ = ∣∣−p2 + p
∣∣ = p2 − p

and
∣∣∣2p4 − 2p2 − 2|e(ΓR)|

|v(ΓR)|

∣∣∣ = ∣∣p4 − p2
∣∣ = p4 − p2. Thus,

LE+(ΓR) = (p4 − p2 − 2p− 1)× 0 + (p2 + p)× (p2 − p) + p4 − p2

= 2p2(p2 − 1).

If ΓR = l1K(p2−p) ∪ l2K(p3−p), then ΓR = Kl1.p2−p,l2.p3−p. This implies
|v(ΓR)| = p4 − p.

Using Theorem 3.1(a), we have

PΓR
(x)

= x(p
4−p)−(l1+l2)

2∏
i=1

(x+ pi)
ai−1

 2∏
i=1

(x+ pi)−
2∑

j=1

ajpj

2∏
i=1,i ̸=j

(x+ pi)


= xp

4−p−l1−l2(x+ p2 − p)l1−1(x+ p3 − p)l2−1

× ((x+ p2 − p)(x+ p3 − p)− l1(p
2 − p)(x+ p3 − p)

− l2(p
3 − p)(x+ p2 − p))

= xp
4−p−l1−l2(x− (p− p2))l1−1(x− (p− p3))l2−1

× (x2 − x(p4 − p3 − p2 + p)− (p5 − p4 − p3 + p2)(l1 + l2 − 1)).

Thus, Spec(ΓR) =
{
(0)p

4−p−l1−l2, (p− p2)l1−1, (p− p3)l2−1, (x1)
1, (x2)

1
}

, where
x1, x2 are the roots of the polynomial

x2 − x(p4 − p3 − p2 + p)− (p5 − p4 − p3 + p2)(l1 + l2 − 1).
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Using Theorem 3.1(b), we have

QΓR
(x) =

2∏
i=1

(x− (p4 − p) + pi)
ai(pi−1)

2∏
i=1

(x− (p4 − p) + 2pi)
ai

(
1−

2∑
i=1

aipi
x− (p4 − p) + 2pi

)
= (x− (p4 − p) + p2 − p)l1(p

2−p−1)(x− (p4 − p) + p3 − p)l2(p
3−p−1)

× (x− (p4 − p) + 2p2 − 2p)l1(x− (p4 − p) + 2p3 − 2p)l2

×
(
1− l1(p

2 − p)

x− (p4 − p) + 2p2 − 2p
− l2(p

3 − p)

x− (p4 − p) + 2p3 − 2p

)
= (x− (p4 − p2))l1(p

2−p−1)(x− (p4 − p3))l2(p
3−p−1)

× (x− (p4 − 2p2 + p))l1(x− (p4 − 2p3 + p))l2

×
(
1− l1(p

2 − p)

x− (p4 − 2p2 + p)
− l2(p

3 − p)

x− (p4 − 2p3 + p)

)
.

Therefore,

QΓR
(x) = (x− (p4 − p2))l1(p

2−p−1)(x− (p4 − p3))l2(p
3−p−1)

(x− (p4 − 2p2 + p))l1−1(x− (p4 − 2p3 + p))l2−1f(x),

where
f(x) = (x2 − x(3p4 − 2p3 − 2p2 + p) + p8 − 2p7 − 2p6 + 6p5 − 2p4 − 2p3

+p2 + l1(p
2 − p)(p4 − 2p3 + p) + l2(p

3 − p)(p4 − 2p2 + p))

Thus

Q-spec(ΓR) =
{
(p4 − p2)l1(p

2−p−1), (p4 − p3)l2(p
3−p−1),

(p4 − 2p2 + p)l1−1, (p4 − 2p3 + p)l2−1, (x1)
1, (x2)

1
}
,

where x1, x2 are the roots of the polynomial f(x).
Using Lemma 2.2(a)(i), we have

L-spec(ΓR) =
{
(0)l1+l2, (p2 − p)l1(p

2−p−1), (p3 − p)l2(p
3−p−1)

}
.

Thus, Theorem 3.3 yields

L-spec(ΓR) =
{
(0)1, (p4 − p3)l2(p

3−p−1), (p4 − p2)l1(p
2−p−1), (p4 − p)l1+l2−1

}
.
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Here |v(ΓR)| = p4 − p, |e(ΓR)| = p3(p−1)(p2−1)(l1+pl2)
2 and so

2|e(ΓR)|
|v(ΓR)| =

(p4−p2)(l1+pl2)
p2+p+1 .

Therefore ∣∣∣∣p4 − p3 − 2|e(ΓR)|
|v(ΓR)|

∣∣∣∣ = (p3 − p2)l1
p2 + p+ 1

,∣∣∣∣p4 − p2 − 2|e(ΓR)|
|v(ΓR)|

∣∣∣∣ = (p4 − p2)l2
p2 + p+ 1

,∣∣∣∣p4 − p− 2|e(ΓR)|
|v(ΓR)|

∣∣∣∣ = (p2 − p)(l1 + (p+ 1)2l2)

p2 + p+ 1

and so

LE(ΓR) =
(p4 − p2)(l1 + pl2)

p2 + p+ 1
+

(p3 − p2)(p3 − p− 1)l1l2
p2 + p+ 1

+
(p4 − p2)(p2 − p− 1)l1l2

p2 + p+ 1
+

(p2 − p)(l1 + (p+ 1)2l2)(l1 + l2 − 1)

p2 + p+ 1
.

Consequently, we obtain the necessary expression.
(b) The expressions for Spec(ΓR), L-spec(ΓR), E(ΓR) and LE(ΓR) follow

from Lemma 2.2(a)(ii) and Theorem 3.4. By Lemma 2.2(a)(ii), we have
ΓR = (p + 1)K(p3−p2). This implies |v(ΓR)| = p4 − p2 and ΓR = Kp+1.p3−p2.
Using Theorem 3.1(b), we have

QΓR
(x) = (x− (p4 − p2) + p3 − p2)(p+1)(p3−p2−1)

× (x− (p4 − p2) + 2(p3 − p2))p+1

(
1− p4 − p2

x− (p4 − p2) + 2(p3 − p2)

)
= (x− (p4 − p3))p

4−p2−p−1(x− (p4 − 2p3 + p2))p(x− (2p4 − 2p3)).

Therefore,

Q-spec(ΓR) =
{
(p4 − p3)p

4−p2−p−1, (p4 − 2p3 + p2)p, (2p4 − 2p3)1
}

.

Number of edges of ΓR is (p+1)(p3−p2)(p3−p2−1)
2 . Thus

|e(ΓR)| = (p4−p2)(p4−p2−1)
2 − (p+1)(p3−p2)(p3−p2−1)

2 = p5(p2−1)(p−1)
2 .

Now ∣∣∣∣p4 − p3 − 2|e(ΓR)|
|v(ΓR)|

∣∣∣∣ = ∣∣p4 − p3 − p4 + p3
∣∣ = 0,
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|v(ΓR)|

∣∣∣∣ = ∣∣−p3 + p2
∣∣ = p3 − p2

and ∣∣∣∣2p4 − 2p3 − 2|e(ΓR)|
|v(ΓR)|

∣∣∣∣ = ∣∣p4 − p3
∣∣ = p4 − p3.

Thus, LE+(ΓR) = (p4−p2−p−1)×0+p×(p3−p2)+p4−p3 = 2(p4−p3). □

Theorem 3.10. Let |R| = p5 with unity and Z(R) is not a field.
(a) Suppose that Z(R) has p2 elements. Then

Spec(ΓR) =
{
(−p3 + p2)p

2+p, (0)p
5−2p2−p−1, (p5 − p3)1

}
,

Q-spec(ΓR) =
{
(p5 − p3)p

5−2p2−p−1, (p5 − 2p3 + p2)p
2+p, (2p5 − 2p3)1

}
,

L-spec(ΓR) =
{
(0)1, (p5 − p3)p

5−2p2−p−1, (p5 − p2)p
2+p
}

and E(ΓR) = LE+(ΓR) = LE(ΓR) = 2(p5 − p3) or
Spec(ΓR) =

{
(0)p

5−p2−l1−l2, (p2 − p3)l1−1, (p2 − p4)l2−1, (x1)
1, (x2)

1
}

,
where x1, x2 are the roots of the polynomial

x2 − x(p5 − p4 − p3 + p2)− (p7 − p6 − p5 + p4)(l1 + l2 − 1),

Q-spec(ΓR) =
{
(p5 − p3)l1(p

3−p2−1), (p5 − p4)l2(p
4−p2−1), (p5 − 2p3 + p2)l1−1,

(p5 − 2p4 + p2)l2−1, (x1)
1, (x2)

1
}
,

where x1, x2 are the roots of the polynomial

x2 − x(3p5 − 2p4 − 2p3 + p2) + p10 − 2p9 − 2p8 + 6p7 − 2p6 − 2p5 + p4

+l1(p
3 − p2)(p5 − 2p4 + p2) + l2(p

4 − p2)(p5 − 2p3 + p2),

L-spec(ΓR) =
{
(0)1, (p5 − p4)l2(p

4−p2−1), (p5 − p3)l1(p
3−p2−1),

(p5 − p2)l1+l2−1
}

and
LE(ΓR) =

2[(p5−p3)(l1+pl2)+(p8−p7−p6+p5−p4+p3)l1l2]
p2+p+1 ,

where l1 + l2(p+ 1) = p2 + p+ 1.
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(b) If |Z(R)| = p3, then

Spec(ΓR) =
{
(−p4 + p3)p, (0)p

5−p3−p−1, (p5 − p4)1
}
,

Q-spec(ΓR) =
{
(p5 − p4)p

5−p3−p−1, (p5 − 2p4 + p3)p, (2p5 − 2p4)1
}
,

L-spec(ΓR) =
{
(0)1, (p5 − p4)p

5−p3−p−1, (p5 − p3)p
}

and E(ΓR) = LE+(ΓR) = LE(ΓR) = 2(p5 − p4).

Proof. (a) By Lemma 2.2(b)(i), ΓR = (p2 + p + 1)Kp2(p−1) or
l1Kp2(p−1) ∪ l2Kp2(p2−1), when l1 + l2(p+ 1) = p2 + p+ 1, if |Z(R)| = p2.

If ΓR = (p2 + p+ 1)K(p3−p2) then Theorem 3.4 yields

Spec(ΓR) =
{
(−p3 + p2)p

2+p, (0)p
5−2p2−p−1, (p5 − p3)1

}
,

L-spec(ΓR) =
{
(0)1, (p5 − p3)p

5−2p2−p−1, (p5 − p2)p
2+p
}

and E(ΓR) = LE(ΓR) = 2(p5 − p3). Here, |v(ΓR)| = p5 − p2 and
ΓR = Kp2+p+1.p3−p2. Using Theorem 3.1(b), we have

QΓR
(x) = (x− (p5 − p2) + p3 − p2)(p

2+p+1)(p2−p−1)

× (x− (p5 − p2) + 2(p3 − p2))p
2+p+1

×
(
1− p5 − p2

x− (p5 − p2) + 2(p3 − p2)

)
= (x− (p5 − p3))p

5−2p2−p−1(x− (p5 − 2p3 + p2))p
2+p

× (x− (2p5 − 2p3)).

Therefore,

Q-spec(ΓR) =
{
(p5 − p3)p

5−2p2−p−1, (p5 − 2p3 + p2)p
2+p, (2p5 − 2p3)1

}
.

Number of edges of ΓR is p8−p7−2p5+p4+p2

2 . Therefore

|e(ΓR)| = p10−2p7−p5+p4+p2

2 − p8−p7−2p5+p4+p2

2 = p5(p3−1)(p2−1)
2 .

Now, ∣∣∣∣p5 − p3 − 2|e(ΓR)|
|v(ΓR)|

∣∣∣∣ = ∣∣p5 − p3 − p5 + p3
∣∣ = 0,∣∣∣∣p5 − 2p3 + p2 − 2|e(ΓR)|

|v(ΓR)|

∣∣∣∣ = ∣∣−p3 + p2
∣∣ = p3 − p2
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and ∣∣∣∣2p5 − 2p3 − 2|e(ΓR)|
|v(ΓR)|

∣∣∣∣ = ∣∣p5 − p3
∣∣ = p5 − p3.

Thus,
LE+(ΓR) = (p5 − 2p2 − p− 1)× 0 + (p2 + p)× (p3 − p2) + p5 − p3

= 2(p5 − p3)

If ΓR = l1K(p3−p2) ∪ l2K(p4−p2), then ΓR = Kl1.p3−p2,l2.p4−p2. This implies
|v(ΓR)| = p5 − p2.

Using Theorem 3.1(a), we have

PΓR
(x) = x(p

5−p2)−(l1+l2)
2∏

i=1

(x+ pi)
ai−1

×

 2∏
i=1

(x+ pi)−
2∑

j=1

ajpj

2∏
i=1,i ̸=j

(x+ pi)


= xp

5−p2−l1−l2(x+ p3 − p2)l1−1(x+ p4 − p2)l2−1

× ((x+ p3 − p2)(x+ p4 − p2)− l1(p
3 − p2)(x+ p4 − p2)

− l2(p
4 − p2)(x+ p3 − p2))

= xp
5−p2−l1−l2(x− (p2 − p3))l1−1(x− (p2 − p4))l2−1

×(x2−x(p5− p4 − p3 + p2)− (p7 − p6 − p5 + p4)(l1 + l2−1)).

Thus Spec(ΓR) =
{
(0)p

5−p2−l1−l2, (p2 − p3)l1−1, (p2 − p4)l2−1, (x1)
1, (x2)

1
}

, where
x1, x2 are the roots of the polynomial

x2 − x(p5 − p4 − p3 + p2) −(p7 − p6 − p5 + p4)(l1 + l2 − 1).
Using Theorem 3.1(b), we have

QΓR
(x) =

2∏
i=1

(x− (p5 − p2) + pi)
ai(pi−1)

2∏
i=1

(x− (p5 − p2) + 2pi)
ai

×

(
1−

2∑
i=1

aipi
x− (p5 − p2) + 2pi

)
= (x− (p5 − p2) + p3 − p2)l1(p

3−p2−1)(x− (p5 − p2) + p4 − p2)l2(p
4−p2−1)

× (x− (p5 − p2) + 2p3 − 2p2)l1(x− (p5 − p2) + 2p4 − 2p2)l2
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×
(
1− l1(p

3 − p2)

x− (p5 − p2) + 2p3 − 2p2
− l2(p

4 − p2)

x− (p5 − p2) + 2p4 − 2p2

)
= (x− (p5 − p3))l1(p

3−p2−1)(x− (p5 − p4))l2(p
4−p2−1)

× (x− (p5 − 2p3 + p2))l1(x− (p5 − 2p4 + p2))l2

×
(
1− l1(p

3 − p2)

x− (p5 − 2p3 + p2)
− l2(p

4 − p2)

x− (p5 − 2p4 + p2)

)
= (x− (p5 − p3))l1(p

3−p2−1)(x− (p5 − p4))l2(p
4−p2−1)

× (x− (p5 − 2p3 + p2))l1−1(x− (p5 − 2p4 + p2))l2−1f(x),

where
f(x) = x2 − x(3p5 − 2p4 − 2p3 + p2)+ p10− 2p9− 2p8+ 6p7

−2p6 − 2p5 + p4 + l1(p
3 − p2)(p5 − 2p4 + p2)

+l2(p
4 − p2)(p5 − 2p3 + p2).

Thus,

Q-spec(ΓR) =
{
(p5 − p3)l1(p

3−p2−1), (p5 − p4)l2(p
4−p2−1),

(p5 − 2p3 + p2)l1−1, (p5 − 2p4 + p2)l2−1, (x1)
1, (x2)

1
}

where x1, x2 are the roots of the polynomial f(x). Using Lemma 2.2(b)(i),
we have

L-spec(ΓR) =
{
(0)l1+l2, (p3 − p2)l1(p

3−p2−1), (p4 − p2)l2(p
4−p2−1)

}
.

Thus, Theorem 3.3 yields

L-spec(ΓR) =
{
(0)1, (p5 − p4)l2(p

4−p2−1), (p5 − p3)l1(p
3−p2−1), (p5 − p2)l1+l2−1

}
.

Here |v(ΓR)| = p5 − p2, |e(ΓR)| = (p6−p5)(p2−1)(l1+pl2)
2 and so

2|e(ΓR)|
|v(ΓR)| =

(p5−p3)(l1+pl2)
p2+p+1 .

Therefore ∣∣∣∣p5 − p4 − 2|e(ΓR)|
|v(ΓR)|

∣∣∣∣ = (p4 − p3)l1
p2 + p+ 1

,∣∣∣∣p5 − p3 − 2|e(ΓR)|
|v(ΓR)|

∣∣∣∣ = (p5 − p3)l2
p2 + p+ 1

,∣∣∣∣p5 − p2 − 2|e(ΓR)|
|v(ΓR)|

∣∣∣∣ = (p3 − p2)(l1 + (p+ 1)2l2)

p2 + p+ 1
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and so

LE(ΓR) =
(p5 − p3)(l1 + pl2)

p2 + p+ 1
+

(p4 − p3)(p4 − p2 − 1)l1l2
p2 + p+ 1

+
(p5 − p3)(p3 − p2 − 1)l1l2

p2 + p+ 1
+

(p3 − p2)(l1 + (p+ 1)2l2)(l1 + l2 − 1)

p2 + p+ 1
.

Consequently, we obtain the necessary expression.
(b) The expressions for Spec(ΓR), L-spec(ΓR), E(ΓR) and LE(ΓR) follow

from Lemma 2.2(b)(ii) and Theorem 3.4.
By Lemma 2.2(b)(ii) we have ΓR = (p + 1)K(p4−p3). This implies

|v(ΓR)| = p5 − p3 and ΓR = Kp+1.p4−p3. Using Theorem 3.1(b), we have

QΓR
(x) = (x− (p5 − p3) + p4 − p3)(p+1)(p4−p3−1)

× (x− (p5 − p3) + 2(p4 − p3))p+1

(
1− p5 − p3

x− (p5 − p3) + 2(p4 − p3)

)
= (x− (p5 − p4))p

5−p3−p−1(x− (p5 − 2p4 + p3))p(x− (2p5 − 2p4)).

Therefore, Q-spec(ΓR) =
{
(p5 − p4)p

5−p3−p−1, (p5 − 2p4 + p3)p, (2p5 − 2p4)1
}

.
Number of edges of ΓR is p9−p8−p7+p6−p5+p3

2 . Therefore,

|e(ΓR)| = p10−2p8+p6−p5+p3

2 − p9−p8−p7+p6−p5+p3

2 = p7(p2−1)(p−1)
2 .

Now, ∣∣∣∣p5 − p4 − 2|e(ΓR)|
|v(ΓR)|

∣∣∣∣ = ∣∣p5 − p4 − p5 + p4
∣∣ = 0,∣∣∣∣p5 − 2p4 + p3 − 2|e(ΓR)|

|v(ΓR)|

∣∣∣∣ = ∣∣−p4 + p3
∣∣ = p4 − p3

and ∣∣∣∣2p5 − 2p4 − 2|e(ΓR)|
|v(ΓR)|

∣∣∣∣ = ∣∣p5 − p4
∣∣ = p5 − p4.

Thus,

LE+(ΓR) = (p5 − p3 − p− 1)× 0 + p× (p4 − p3) + p5 − p4 = 2(p5 − p4).

□

Theorem 3.11. Let |R| = p2q and Z(R) = {0}.
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(a) Suppose that “t ∈ {p, q, p2, pq} and (t− 1) divides (p2q − 1)”. Then

Spec(ΓR) =

{
(−t+ 1)

p2q−1
t−1 −1, (0)

(t−2)(p2q−1)
t−1 , (p2q − t)1

}
,

Q-spec(ΓR) =
{
(p2q − t)

p2q−1
t−1 (t−2), (p2q − 2t+ 1)

p2q−t
t−1 , (2p2q − 2t)1

}
,

L-spec(ΓR) =

{
(0)1, (p2q − t)

(t−2)(p2q−1)
t−1 , (p2q − 1)

p2q−1
t−1 −1

}
and E(ΓR) = LE+(ΓR) = LE(ΓR) = 2(p2q − t).

(b) If (p− 1)l1 + (q − 1)l2 + (p2 − 1)l3 + (pq − 1)l4 = p2q − 1, then

Spec(ΓR) =
{
(0)p

2q−1−l1−l2−l3−l4, (1− p)l1−1, (1− q)l2−1,

(1− p2)l3−1, (1− pq)l4−1, (x1)
1, (x2)

1, (x3)
1, (x4)

1
}
,

where x1, x2, x3, x4 are the roots of the polynomial
(x+ e)(x+ f)(x+ g)(x+ h)− l1e(x+ f)(x+ g)(x+ h)

−l2f(x+ e)(x+ g)(x+ h)− l3g(x+ e)(x+ f)(x+ h)

−l4h(x+ e)(x+ f)(x+ g),

where e = p− 1, f = q − 1, g = p2 − 1 and h = pq − 1,

Q-spec(ΓR) =
{
(p2q − p)l1(p−2), (p2q − q)l2(q−2), (p2q − p2)l3(p

2−2),

(p2q − pq)l4(pq−2), (p2q − 2p+ 1)l1−1, (p2q − 2q + 1)l2−1,

(p2q − 2p2 + 1)l3−1, (p2q − 2pq + 1)l4−1, (x1)
1,

(x2)
1, (x3)

1, (x4)
1
}
,

where x1, x2, x3, x4 are the roots of the polynomial
(x− a)(x− b)(x− c)(x− d)− l1(p− 1)(x− b)(x− c)(x− d)

−l2(q − 1)(x− a)(x− c)(x− d)− l3(p
2 − 1)(x− a)(x− b)(x− d)

−l4(pq − 1)(x− a)(x− b)(x− c),

where a = p2q − 2p + 1, b = p2q − 2q + 1, c = p2q − 2p2 + 1 and
d = p2q − 2pq + 1 and

L-spec(ΓR) =
{
(0)1, (p2q − pq)l4(pq−2), (p2q − p2)l3(p

2−2),

(p2q − q)l2(q−2), (p2q − p)l1(p−2), (p2q − 1)l1+l2+l3+l4−1
}
.
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Proof. (a) The expressions for Spec(ΓR), L-spec(ΓR), E(ΓR) and LE(ΓR)
follow from Lemma 2.1(b)(i) and Theorem 3.4. By Lemma 2.1(b)(i), we have
ΓR = p2q−1

t−1 Kt−1 . This implies ΓR = Kp2q−1
t−1 .t−1

. Using Theorem 3.1(b), we
have

QΓR
(x)

= (x− (p2q − 1) + t− 1)
p2q−1
t−1 (t−1−1)(x− (p2q − 1) + 2(t− 1))

p2q−1
t−1

×
(
1− p2q − 1

x− (p2q − 1) + 2(t− 1)

)
= (x− (p2q − t))

p2q−1
t−1 (t−2)(x− (p2q − 2t+ 1))

p2q−t
t−1 (x− (2p2q − 2t)).

Therefore, Q-spec(ΓR) =
{
(p2q− t)

p2q−1
t−1 (t−2), (p2q− 2t+1)

p2q−t
t−1 , (2p2q− 2t)1

}
.

Number of edges of ΓR is (p2q−1)(t−2)
2 . Thus,

|e(ΓR)| = (p2q−1)(p2q−2)
2 − (p2q−1)(t−2)

2 = (p2q−1)(p2q−t)
2 .

Now, ∣∣∣∣p2q − t− 2|e(ΓR)|
|v(ΓR)|

∣∣∣∣ = ∣∣p2q − t− p2q + t
∣∣ = 0,∣∣∣∣p2q − 2t+ 1− 2|e(ΓR)|

|v(ΓR)|

∣∣∣∣ = |−t+ 1| = t− 1

and ∣∣∣∣2p2q − 2t− 2|e(ΓR)|
|v(ΓR)|

∣∣∣∣ = ∣∣p2q − t
∣∣ = p2q − t.

Thus, LE+(ΓR) =
(
p2q−1
t−1 (t− 2)

)
× 0 +

(
p2q−t
t−1

)
× (t− 1) + p2q − t

= 2(p2q − t).
(b) Lemma 2.1(b)(ii) gives ΓR = l1Kp−1 ∪ l2Kq−1 ∪ l3Kp2−1 ∪ l4Kpq−1. This

implies ΓR = Kl1.p−1,l2.q−1,l3.p2−1,l4.pq−1.
Using Theorem 3.1(a), we have

PΓR
(x) = x(p

2q−1)−(l1+l2+l3+l4)
4∏

i=1

(x+ pi)
ai−1

×

 4∏
i=1

(x+ pi)−
4∑

j=1

ajpj

4∏
i=1,i ̸=j

(x+ pi)


= xp

2q−1−l1−l2−l3−l4(x+ p− 1)l1−1(x+ q − 1)l2−1
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× (x+ p2 − 1)l3−1(x+ pq − 1)l4−1

× ((x+ p− 1)(x+ q − 1)(x+ p2 − 1)(x+ pq − 1)

− l1(p− 1)(x+ q − 1)(x+ p2 − 1)(x+ pq − 1)

− l2(q − 1)(x+ p− 1)(x+ p2 − 1)(x+ pq − 1)

− l3(p
2 − 1)(x+ p− 1)(x+ q − 1)(x+ pq − 1)

− l4(pq − 1)(x+ p− 1)(x+ q − 1)(x+ p2 − 1)).

Thus,

Spec(ΓR) =
{
(0)p

2q−1−l1−l2−l3−l4, (1− p)l1−1, (1− q)l2−1,

(1− p2)l3−1, (1− pq)l4−1, (x1)
1, (x2)

1, (x3)
1, (x4)

1
}
,

where x1, x2, x3, x4 are the roots of the polynomial
(x+ e)(x+ f)(x+ g)(x+ h)− l1e(x+ f)(x+ g)(x+ h)

−l2f(x+ e)(x+ g)(x+ h)− l3g(x+ e)(x+ f)(x+ h)

−l4h(x+ e)(x+ f)(x+ g),

where e = p− 1, f = q − 1, g = p2 − 1 and h = pq − 1.
Using Theorem 3.1(b), we have

QΓR
(x) =

4∏
i=1

(x− (p2q − 1) + pi)
ai(pi−1)

4∏
i=1

(x− (p2q − 1) + 2pi)
ai

×

(
1−

4∑
i=1

aipi
x− (p2q − 1) + 2pi

)
= (x− (p2q − 1) + p− 1)l1(p−2)(x− (p2q − 1) + q −1)l2(q−2)

× (x− (p2q −1) + p2 − 1)l3(p
2−2)(x− (p2q − 1) + pq −1)l4(pq−2)

× (x− (p2q − 1) + 2p− 2)l1(x− (p2q − 1) + 2q − 2)l2

× (x− (p2q − 1) + 2p2 − 2)l3(x− (p2q − 1) + 2pq − 2)l4

×
(
1− l1(p− 1)

x− (p2q − 1) + 2p− 2
− l2(q − 1)

x− (p2q − 1) + 2q − 2

− l3(p
2 − 1)

x− (p2q − 1) + 2p2 − 2
− l4(pq − 1)

x− (p2q − 1) + 2pq − 2

)
After simplification we get



230 SHARMA AND NATH

QΓR
(x)

= (x− (p2q − p))l1(p−2)(x− (p2q − q))l2(q−2)(x− (p2q − p2))l3(p
2−2)

× (x− (p2q − pq))l4(pq−2)(x− p2q + 2p− 1)l1−1(x− p2q + 2q − 1)l2−1

× (x− p2q + 2p2 − 1)l3−1(x− p2q + 2pq − 1)l4−1

×
(
(x− (p2q − 2p+ 1))(x− (p2q − 2q + 1))

(x− (p2q − 2p2 + 1))(x− (p2q − 2pq + 1))

− l1(p− 1)(x− (p2q − 2q + 1))(x− (p2q − 2p2 + 1))(x− (p2q − 2pq + 1))

− l2(q − 1)(x− (p2q − 2p+ 1))(x− (p2q − 2p2 + 1))(x− (p2q − 2pq + 1))

− l3(p
2 − 1)(x− (p2q − 2p+ 1))(x− (p2q − 2q + 1))(x− (p2q − 2pq + 1))

− l4(pq − 1)(x− (p2q − 2p+ 1))(x− (p2q − 2q + 1))(x− (p2q − 2p2 + 1))
)
.

Thus,

Q-spec(ΓR) =
{
(p2q − p)l1(p−2), (p2q − q)l2(q−2), (p2q − p2)l3(p

2−2),

(p2q − pq)l4(pq−2), (p2q − 2p+1)l1−1, (p2q − 2q + 1)l2−1,

(p2q − 2p2 + 1)l3−1, (p2q − 2pq + 1)l4−1,

(x1)
1, (x2)

1, (x3)
1, (x4)

1
}
,

where x1, x2, x3, x4 are the roots of the polynomial
(x− a)(x− b)(x− c)(x− d)− l1(p− 1)(x− b)(x− c)(x− d)

− l2(q − 1)(x− a)(x− c)(x− d)− l3(p
2 − 1)(x− a)(x− b)(x− d)

− l4(pq − 1)(x− a)(x− b)(x− c),

where a = p2q−2p+1, b = p2q−2q+1, c = p2q−2p2+1 and d = p2q−2pq+1.
Using Lemma 2.1(b)(ii), we have

L-spec(ΓR) =
{
(0)l1+l2+l3+l4, (p− 1)(p−2)l1, (q − 1)(q−2)l2,

(p2 − 1)(p
2−2)l3, (pq − 1)(pq−2)l4

}
.

Thus, Theorem 3.3 yields

L-spec(ΓR) =
{
(0)1, (p2q − pq)l4(pq−2), (p2q − p2)l3(p

2−2),
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(p2q − q)l2(q−2), (p2q − p)l1(p−2), (p2q − 1)l1+l2+l3+l4−1
}
.

□

Theorem 3.12. Let |R| = p3q with unity.
(a) If Z(R) has pq elements, then

Spec(ΓR) =
{
(−p2q + pq)p, (0)(p+1)(p2q−pq−1), (p3q − p2q)1

}
,

Q-spec(ΓR) =
{
(p3q − p2q)(p+1)(p2q−pq−1), (p3q − 2p2q + pq)p,

(2p3q − 2p2q)1
}
,

L-spec(ΓR)=
{
(0)1, (p3q − p2q)(p+1)(p2q−pq−1), ((p+ 1)(p2q − pq))p

}
and E(ΓR) = LE+(ΓR) = LE(ΓR) = 2(p3q − p2q).

(b) Suppose that Z(R) has p2 elements.
(i) If “(p− 1) divides (pq − 1)”, then

Spec(ΓR) =

{
(−p3 + p2)

pq−1
p−1 −1, (0)

(pq−1)(p3−p2−1)
p−1 , (p3q − p3)1

}
,

Q-spec(ΓR) =
{
(p3q − p3)

pq−1
p−1 (p3−p2−1), (p3q + p2 − 2p3)

pq−p
p−1 ,

(2p3q − 2p3)1
}
,

L-spec(ΓR) =

{
(0)1, (p3q − p3)

(pq−1)(p3−p2−1)
p−1 , (p3q − p2)

pq−1
p−1 −1

}
and E(ΓR) = LE+(ΓR) = LE(ΓR) = 2p3(q − 1).
(ii) If (q − 1) | (pq − 1), then

Spec(ΓR) =

{
(−p2q + p2)

pq−1
q−1 −1, (0)

(pq−1)(p2q−p2−1)
q−1 , (p3q − p2)1

}
,

Q-spec(ΓR) =
{
(p3q − p2q)

pq−1
q−1 (p2q−p2−1), (p3q + p2 − 2p2q)

pq−q
q−1 ,

(2p3q − 2p2q)1
}
,

L-spec(ΓR) =

{
(0)1, (p3q − p2q)

(pq−1)(p2q−p2−1)
q−1 , (p3q − p2)

pq−1
q−1 −1

}
and E(ΓR) = LE+(ΓR) = LE(ΓR) = 2p2(pq − q).
(iii) If pq− 1 = (p− 1)l1+(q− 1)l2, then ΓR = l1Kp3−p2 ∪ l2Kp2q−p2 and
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Spec(ΓR) =
{
(0)p

3q−p2−l1−l2, (p2 − p3)l1−1, (p2 − p2q)l2−1, (x1)
1, (x2)

1
}

,
where x1, x2 are the roots of the polynomial

x2 − x(p3q − p3 − p2q + p2)− (p5q − p5 − p4q + p4)(l1 + l2 − 1),

Q-spec(ΓR) =
{
(p3q − p3)l1(p

3−p2−1), (p3q − p2q)l2(p
2q−p2−1),

(p3q − 2p3 + p2)l1−1, (p3q − 2p2q + p2)l2−1,

(x1)
1, (x2)

1
}
,

where x1, x2 are the roots of the polynomial
x2 − x(3p3q − 2p2q − 2p3 + p2) + p6q2 − 2p6q − 2p5q2

+6p5q − 2p4q − 2p5 + p4 + l1(p
3 − p2)(p3q − 2p2q + p2)

+l2(p
2q − p2)(p3q − 2p3 + p2),

L-spec(ΓR) =
{
(0)1, (p3q − p2q)l2(p

2q−p2−1), (p3q − p3)l1(p
3−p2−1),

(p3q − p2)l1+l2−1
}

and

LE(ΓR) =

{
2(p3−p2)[(q−1)(pl1+ql2)+(p2q−p2−1)(q−p)l1l2]

pq−1 , if p < q
2(p2q−p2)[(p−1)(pl1+ql2)+(p3−p2−1)(p−q)l1l2]

pq−1 , if p > q.

Proof. (a) The expressions for Spec(ΓR), L-spec(ΓR), E(ΓR) and LE(ΓR)
follow from Lemma 2.2(c) and Theorem 3.4. By Lemma 2.2(c), we have
ΓR = (p + 1)Kp2q−pq. This implies |v(ΓR)| = p3q − pq and ΓR = Kp+1.p2q−pq.
Using Theorem 3.1(b), we have

QΓR
(x) = (x− (p3q − pq) + p2q − pq)(p+1)(p2q−pq−1)

× (x− (p3q − pq) + 2(p2q − pq))p+1

×
(
1− p3q − pq

x− (p3q − pq) + 2(p2q − pq)

)
= (x− (p3q − p2q))(p+1)(p2q−pq−1)

× (x− (p3q − 2p2q + pq))p(x− (2p3q − 2p2q)).

Therefore,

Q-spec(ΓR) =
{
(p3q − p2q)(p+1)(p2q−pq−1), (p3q − 2p2q + pq)p, (2p3q − 2p2q)1

}
.
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Number of edges of ΓR is (p+1)(p2q−pq)(p2q−pq−1)
2 . Therefore,

|e(ΓR)| = (p3q−pq)(p3q−pq−1)
2 − (p+1)(p2q−pq)(p2q−pq−1)

2 = q2(p−1)(p5−p3)
2 .

Now ∣∣∣∣p3q − p2q − 2|e(ΓR)|
|v(ΓR)|

∣∣∣∣ = ∣∣p3q − p2q − p3q + p2q
∣∣ = 0,∣∣∣∣p3q − 2p2q + pq − 2|e(ΓR)|

|v(ΓR)|

∣∣∣∣ = ∣∣−p2q + pq
∣∣ = p2q − pq

and ∣∣∣∣2p3q − 2p2q − 2|e(ΓR)|
|v(ΓR)|

∣∣∣∣ = ∣∣p3q − p2q
∣∣ = p3q − p2q.

Thus,
LE+(ΓR) = (p+ 1)(p2q − pq − 1)× 0 + p× (p2q − pq) + p3q − p2q

= 2(p3q − p2q).

(b) (i) The expressions for Spec(ΓR), L-spec(ΓR), E(ΓR) and LE(ΓR) fol-
low from Lemma 2.2(d)(i) and Theorem 3.4. By Lemma 2.2(d)(i), we have
ΓR = pq−1

p−1 Kp3−p2. This implies ΓR = Kpq−1
p−1 .p3−p2. Using Theorem 3.1(b), we

have
QΓR

(x) = (x− (p3q − p2) + p3 − p2)
pq−1
p−1 (p3−p2−1)

× (x− (p3q − p2) + 2(p3 − p2))
pq−1
p−1

×
(
1− p3q − p2

x− (p3q − p2) + 2(p3 − p2)

)
= (x− (p3q − p3))

pq−1
p−1 (p3−p2−1)

× (x− (p3q − 2p3 + p2))
pq−p
p−1 (x− (2p3q − 2p3)).

Therefore,

Q-spec(ΓR) =
{
(p3q − p3)

pq−1
p−1 (p3−p2−1), (p3q − 2p3 + p2)

pq−p
p−1 , (2p3q − 2p3)1

}
.

Number of edges of ΓR is (p3q−p2)(p3−p2−1)
2 . Therefore,

|e(ΓR)| = (p3q−p2)(p3q−p2−1)
2 − (p3q−p2)(p3−p2−1)

2 = (p3q−p2)(p3q−p3)
2 .

Now, ∣∣∣∣p3q − p3 − 2|e(ΓR)|
|v(ΓR)|

∣∣∣∣ = ∣∣p3q − p3 − p3q + p3
∣∣ = 0,
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|v(ΓR)|

∣∣∣∣ = ∣∣−p3 + p2
∣∣ = p3 − p2

and ∣∣∣∣2p3q − 2p3 − 2|e(ΓR)|
|v(ΓR)|

∣∣∣∣ = ∣∣p3q − p3
∣∣ = p3q − p3.

Thus,

LE+(ΓR) =

(
pq − 1

p− 1
(p3 − p2 − 1)

)
× 0 +

(
pq − p

p− 1

)
× (p3 − p2) + p3q − p3

= 2(p3q − p3).

(b) (ii) The expressions for Spec(ΓR), L-spec(ΓR), E(ΓR) and LE(ΓR) follow
from Lemma 2.2(d)(ii) and Theorem 3.4. By Lemma 2.2(d)(ii), we have
ΓR = pq−1

q−1 Kp2q−p2. This implies ΓR = Kpq−1
q−1 .p2q−p2. Using Theorem 3.1(b), we

have
QΓR

(x) = (x− (p3q − p2) + p2q − p2)
pq−1
q−1 (p2q−p2−1)

× (x− (p3q − p2) + 2(p2q − p2))
pq−1
q−1

×
(
1− p3q − p2

x− (p3q − p2) + 2(p2q − p2)

)
= (x− (p3q − p2q))

pq−1
q−1 (p2q−p2−1)

× (x− (p3q − 2p2q + p2))
pq−q
q−1 (x− (2p3q − 2p2q)).

Therefore,

Q-spec(ΓR) =
{
(p3q− p2q)

pq−1
q−1 (p2q−p2−1), (p3q− 2p2q+ p2)

pq−q
q−1 , (2p3q− 2p2q)1

}
.

Number of edges of ΓR is p2(p2q−p2−1)(pq−1)
2 . Therefore,

|e(ΓR)| = (p3q−p2)(p3q−p2−1)
2 − p2(p2q−p2−1)(pq−1)

2 = (p3q−p2)(p3q−p2q)
2 .

Now, ∣∣∣∣p3q − p2q − 2|e(ΓR)|
|v(ΓR)|

∣∣∣∣ = ∣∣p3q − p2q − p3q + p2q
∣∣ = 0,∣∣∣∣p3q − 2p2q + p2 − 2|e(ΓR)|

|v(ΓR)|

∣∣∣∣ = ∣∣−p2q + p2
∣∣ = p2q − p2

and ∣∣∣∣2p3q − 2p2q − 2|e(ΓR)|
|v(ΓR)|

∣∣∣∣ = ∣∣p3q − p2q
∣∣ = p3q − p2q.
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Thus,

LE+(ΓR) =

(
pq − 1

q − 1
(p2q − p2 − 1)

)
× 0 +

(
pq − q

q − 1

)
× (p2q − p2)

+p3q − p2q

= 2(p3q − p2q).

(b) (iii) Lemma 2.2(d)(iii) gives ΓR = l1Kp3−p2 ∪ l2Kp2q−p2. This implies
ΓR = Kl1.p3−p2,l2.p2q−p2.

Using Theorem 3.1(a), we have

PΓR
(x) = x(p

3q−p2)−(l1+l2)
2∏

i=1

(x+ pi)
ai−1

×

 2∏
i=1

(x+ pi)−
2∑

j=1

ajpj

2∏
i=1,i ̸=j

(x+ pi)


= xp

3q−p2−l1−l2(x+ p3 − p2)l1−1(x+ p2q − p2)l2−1

×
(
(x+ p3 − p2)(x+ p2q − p2)

− l1(p
3 − p2)(x+ p2q − p2)− l2(p

2q − p2)(x+ p3 − p2)
)

= xp
3q−p2−l1−l2(x− (p2 − p3))l1−1(x− (p2 − p2q))l2−1 × f(x),

where f(x) = x2−x(p3q−p3−p2q+p2)−(p5q−p5−p4q+p4)(l1+l2−1). Thus
Spec(ΓR) =

{
(0)p

3q−p2−l1−l2, (p2 − p3)l1−1, (p2 − p2q)l2−1, (x1)
1, (x2)

1
}

, where
x1, x2 are the roots of the polynomial f(x).

Using Theorem 3.1(b), we have

QΓR
(x) =

2∏
i=1

(x− (p3q − p2) + pi)
ai(pi−1)

2∏
i=1

(x− (p3q − p2) + 2pi)
ai

×

(
1−

2∑
i=1

aipi
x− (p3q − p2) + 2pi

)
= (x− (p3q − p2) + p3 − p2)l1(p

3−p2−1)

× (x− (p3q − p2) + p2q − p2)l2(p
2q−p2−1)

× (x− (p3q − p2) + 2p3 − 2p2)l1(x− (p3q − p2) + 2p2q − 2p2)l2
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×
(
1− l1(p

3 − p2)

x− (p3q − p2) + 2p3 − 2p2
− l2(p

2q − p2)

x− (p3q − p2) + 2p2q − 2p2

)
= (x− (p3q − p3))l1(p

3−p2−1)(x− (p3q − p2q))l2(p
2q−p2−1)

× (x− (p3q − 2p3 + p2))l1−1(x− (p3q − 2p2q + p2))l2−1 × f(x),

where
f(x) = x2 − x(3p3q − 2p2q − 2p3 + p2) + p6q2 − 2p6q − 2p5q2 + 6p5q

−2p4q − 2p5 + p4 + l1(p
3 − p2)(p3q − 2p2q + p2)

+l2(p
2q − p2)(p3q − 2p3 + p2).

Thus,

Q-spec(ΓR) =
{
(p3q − p3)l1(p

3−p2−1), (p3q − p2q)l2(p
2q−p2−1),

(p3q − 2p3 + p2)l1−1, (p3q − 2p2q + p2)l2−1, (x1)
1, (x2)

1
}
,

where x1, x2 are the roots of the polynomial f(x).
Using Lemma 2.2(d)(iii), we have

L-spec(ΓR) =
{
(0)l1+l2, (p3 − p2)l1(p

3−p2−1), (p2q − p2)l2(p
2q−p2−1)

}
.

Thus,
Theorem 3.3 yields

L-spec(ΓR) =
{
(0)1, (p3q − p2q)l2(p

2q−p2−1), (p3q − p3)l1(p
3−p2−1),

(p3q − p2)l1+l2−1
}
.

Here |v(ΓR)| = p3q − p2, |e(ΓR)| = p4(p−1)(q−1)(pl1+ql2)
2 and so

2|e(ΓR)|
|v(ΓR)| =

p2(p−1)(q−1)(pl1+ql2)
pq−1 .

Therefore ∣∣∣∣p3q − p2q − 2|e(ΓR)|
|v(ΓR)|

∣∣∣∣ = ∣∣∣∣p2(p− 1)(p− q)l1
pq − 1

∣∣∣∣
=

{
(p3−p2)(q−p)l1

pq−1 , if p < q
(p3−p2)(p−q)l1

pq−1 , if p > q,∣∣∣∣p3q − p3 − 2|e(ΓR)|
|v(ΓR)|

∣∣∣∣ = ∣∣∣∣p2(q − 1)(q − p)l2
pq − 1

∣∣∣∣
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=

{
(p2q−p2)(q−p)l2

pq−1 , if p < q
(p2q−p2)(p−q)l2

pq−1 , if p > q,

and
∣∣∣p3q − p2 − 2|e(ΓR)|

|v(ΓR)|

∣∣∣ = p2((p−1)2l1+(q−1)2l2)
pq−1 .

If p < q, then we have

LE(ΓR) =
p2(p− 1)(q − 1)(pl1 + ql2)

pq − 1

+
(p3 − p2)(q − p)(p2q − p2 − 1)l1l2

pq − 1

+
(p2q − p2)(q − p)(p3 − p2 − 1)l1l2

pq − 1

+
p2((p− 1)2l1 + (q − 1)2l2)(l1 + l2 − 1)

pq − 1
.

Consequently, we obtain the necessary expression.
If p > q, then we have

LE(ΓR) =
p2(p− 1)(q − 1)(pl1 + ql2)

pq − 1

+
(p3 − p2)(p− q)(p2q − p2 − 1)l1l2

pq − 1

+
(p2q − p2)(p− q)(p3 − p2 − 1)l1l2

pq − 1

+
p2((p− 1)2l1 + (q − 1)2l2)(l1 + l2 − 1)

pq − 1
.

Consequently, we obtain the necessary expression. □
With the following theorem we come to an end of this section.

Theorem 3.13. If S1, S2, . . . , Sn are the non-identical centralizers of
s ∈ R \ Z(R), where R is a finite CC-ring and |Z(R)| = η, then
L-spec(ΓR) =

{
(0)1, (|R|− |Sn|)|Sn|−η−1, . . . , (|R|− |S1|)|S1|−η−1, (|R|− η)n−1

}
and LE(ΓR) =

2
|R|−η

(
|R|2 − (

∑n
j=1 |Sj|2) + (n− 1)η2

)
.

In particular, if |S| = |S1| = |S2| = · · · = |Sn|, then

Spec(ΓR) =
{
(−|S|+ η)n−1, (0)n(|S|−η−1), ((n− 1)(|S| − η))1

}
,
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L-spec(ΓR) =
{
(0)1, ((n− 1)(|S| − η))n(|S|−η−1), (n(|S| − η))n−1

}
and E(ΓR) = LE(ΓR) = 2(n− 1)(|S| − η).

Proof. Lemma 2.3 gives ΓR =
n
∪
i=1

K|Si|−η and

L-spec(ΓR) =
{
(0)n, (|S1| − η)|S1|−η−1, . . . , (|Sn| − η)|Sn|−η−1

}
.

Therefore, Theorem 3.3 yields

L-spec(ΓR) =
{
(0)1, (|R| − |Sn|)|Sn|−η−1, . . . , (|R| − |S1|)|S1|−η−1,

(|R| − η)n−1
}
.

Again, |v(ΓR)| = |R| − η, |R| =
∑n

j=1 |Sj| − (n− 1)η and

2|e(ΓR)|
|v(ΓR)| =

|R|2−(
∑n

j=1 |Sj |2)+(n−1)η2

|R|−η .

Therefore, for i = 1, 2, . . . , n, we have∣∣∣|R| − |Si| − 2|e(ΓR)|
|v(ΓR)|

∣∣∣ = ∑n
j=1 |Sj |2+η(|Si|−η(n−1))−(|Si|+η)|R|

|R|−η

and ∣∣∣∣|R| − η − 2|e(ΓR)|
|v(ΓR)|

∣∣∣∣ =
∑n

j=1 |Sj|2 − (n− 2)η2 − 2|R|η
|R| − η

.

Thus

LE(ΓR)

=
|R|2 − (

∑n
j=1 |Sj|2) + (n− 1)η2

|R| − η

+
n∑

i=1

(|Si| − η − 1)

(∑n
j=1 |Sj|2 + η(|Si| − (n− 1)η)− |R|(η + |Si|)

|R| − η

)

+(n− 1)

(∑n
j=1 |Sj|2 − (n− 2)η2 − 2|R|η

|R| − η

)
.

Consequently, we obtain the necessary expression.
If |S| = |S1| = |S2| = . . . = |Sn|, then ΓR = nK|S|−η. Hence, Theorem 3.4

yields the result. □
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4. Some consequences
Our findings, in the previous section, imply that ΓR of the rings we analyze

are L-integral. Now, we determine whether ΓR of the rings considered in this
paper are L-hyperenergetic.

Theorem 4.1. If R
Z(R)

∼= Zp × Zp then LE(ΓR) ≤ LE(K|v(ΓR)|); and hence
ΓR is not L-hyperenergetic.

Proof. Since |v(ΓR)| = (p2 − 1)|Z(R)|, we have
LE(K|v(ΓR)|) = 2((p2 − 1)|Z(R)| − 1) ≥ 2p(p− 1)|Z(R)|.

Hence, Theorem 3.5 yields the result. □
As a consequence of Theorem 4.1, ΓR of all the rings taken into considera-

tion in Theorem 3.6–3.8 are not L-hyperenergetic.

Theorem 4.2. Let |R| = p4 with unity.
(a) Suppose that Z(R) has p elements. Then LE(ΓR)< LE(K|v(ΓR)|); and

hence ΓR is not L-hyperenergetic and if l1+ l2(p+1) = p2+ p+1, then
LE(ΓR) > LE(K|v(ΓR)|); and hence ΓR is L-hyperenergetic.

(b) If |Z(R)| = p2, then LE(ΓR) < LE(K|v(ΓR)|); and hence ΓR is not
L-hyperenergetic.

Proof. (a) Since |v(ΓR)| = p4 − p, LE(K|v(ΓR)|) = 2(p4 − p − 1). Therefore,
Theorem 3.9(a) yields

LE(K|v(ΓR)|)− LE(ΓR) = 2(p2 − p− 1) > 0

and if l1 + l2(p+ 1) = p2 + p+ 1, we have

LE(ΓR)− LE(K|v(ΓR)|) =
2(p2+p+1)+2{(p6−p5−p4+p2)l1−(p4−p2)}l2

p2+p+1 > 0

as we observe that the term, {(p6 − p5 − p4 + p2)l1 − (p4 − p2)}l2 > 0, for all
p and hence the result follows.

(b) We have |v(ΓR)| = p4 − p2. Therefore LE(K|v(ΓR)|) = 2(p4 − p2 − 1).
From Theorem 3.9(b), LE(ΓR) = 2(p4−p3) < 2(p4−p2−1), as p3−p2−1 > 0.
Consequently, we get the required result. □
Theorem 4.3. Let R has unity, |R| = p5 and Z(R) is not a field.

(a) Suppose that Z(R) has p2 elements. Then LE(ΓR)<LE(K|v(ΓR)|); and
hence ΓR is not L-hyperenergetic and if l1+ l2(p+1) = p2+ p+1, then
LE(ΓR) > LE(K|v(ΓR)|); and hence ΓR is L-hyperenergetic.
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(b) If |Z(R)| = p3, then LE(ΓR) < LE(K|R|−|Z(R)|); and hence ΓR is not
L-hyperenergetic.

Proof. Since Z(R) is not a field, |Z(R)| = p2 or |Z(R)| = p3.
Case 1: |Z(R)| = p2

We have |v(ΓR)| = p5−p2. Therefore LE(K|v(ΓR)|) = 2(p5−p2−1). Theorem
3.10(a), yields

LE(K|v(ΓR)|)− LE(ΓR) = 2(p3 − p2 − 1) > 0

and if l1 + l2(p+ 1) = p2 + p+ 1, we have
LE(ΓR)− LE(K|v(ΓR)|)

=
2(−p5 + 2p2 + p+ 1)

p2 + p+ 1

+
2{(p8 −p7 − p6 − p4)l1 + (p5l1 −p5) + (p3l1 + p3)}l2

p2 + p+ 1

≥ p4(p4 − p3 − p2 − p− 1) + 2p3 + 2p2 + p+ 1

p2 + p+ 1
( since l1, l2 ≥ 1)

> 0 ( since p4 − p3 − p2 − p− 1 > 0 for all p).
Hence the result follows.

Case 2: |Z(R)| = p3

We have |v(ΓR)| = p5 − p3. Therefore LE(K|v(ΓR)|) = 2(p5 − p3 − 1). From
Theorem 3.10(b), LE(ΓR) = 2(p5 − p4) < 2(p5 − p3 − 1), as p4 − p3 − 1 > 0.
Consequently, we get the required result. □
Theorem 4.4. If “|R| = p2q and Z(R) = {0} and t ∈ {p, q, p2, pq} and
(t− 1) | (p2q − 1)” then ΓR is not L-hyperenergetic.
Proof. Since |v(ΓR)| = p2q − 1, LE(K|v(ΓR)|) = 2(p2q − 2). We know that
p2q − t ≤ p2q − 2 always, where t ∈ {p, q, p2, pq}. Therefore, by Theorem
3.11(a) the result follows. □
Theorem 4.5. Let |R| = p3q with unity.

(a) Then LE(ΓR) < LE(K|v(ΓR)|) whenever |Z(R)| = pq; and hence ΓR is
not L-hyperenergetic.

(b) If |Z(R)| = p2 and
(i) (p− 1) divides (pq − 1) or (q − 1) divides (pq − 1), then ΓR is not

L-hyperenergetic.
(ii) pq − 1 = (p − 1)l1 + (q − 1)l2, where p ̸= 2 and q ̸= 3, then ΓR is

L-hyperenergetic.
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Proof. Since |Z(R)| is not a prime, |Z(R)| = pq or |Z(R)| = p2.
Case 1: |Z(R)| = pq

Since |v(ΓR)| = p3q − pq, LE(K|v(ΓR)|) = 2(p3q − pq − 1). From Theorem
3.12(a), LE(ΓR) = 2(p3q− p2q) < 2(p3q− pq− 1), as p2q− pq− 1 > 0. Hence
the result follows.

Case 2: |Z(R)| = p2

We have |v(ΓR)| = p3q − p2. Therefore LE(K|v(ΓR)|) = 2(p3q − p2 − 1).
Subcase 2.1: If (p − 1) | (pq − 1), then from Theorem 3.12(b)(i),

LE(ΓR) = 2(p3q − p3) < 2(p3q − p2 − 1), as p3 − p2 − 1 > 0.
Subcase 2.2: If (q − 1) | (pq − 1), then from Theorem 3.12(b)(ii),

LE(ΓR) = 2(p3q − p2q) < 2(p3q − p2 − 1), as p2q − p2 − 1 > 0.
Subcase 2.3: If pq−1 = (p−1)l1+(q−1)l2 and p < q, then from Theorem

3.12(b)(iii), we have

LE(ΓR)− LE(K|v(ΓR)|)

=
2(pq − 1)(1 + p2 − p2q)

pq − 1

+
2p2(p− 1)(q − p)l1{(p2q − p2 − 1)l2 + 1}

pq − 1

≥ (pq − 1)(1 + p2 − p2q) + p2(p− 1)(q − p)(p2q − p2)

pq − 1
( since l1, l2 ≥ 1)

≥ p2(q − 1)[p2(p− 1)(q − p)− (pq − 1)]

pq − 1

≥ p3(q − 1)[p(p− 1)(q − p)− q]

pq − 1

≥ p3(q − 1)[p(q − p)− q]

pq − 1
> 0,

since pq − p2 − q > 0 for all p and q such that p ̸= 2 and q ̸= 3.
If pq − 1 = (p − 1)l1 + (q − 1)l2 and p > q, then from Theorem 3.12(b)(iii),
we have

LE(ΓR)− LE(K|v(ΓR)|)

=
2(pq − 1)(1 + p2 − p3)

pq − 1
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+
2p2(q − 1)(p− q)l2{(p3 − p2 − 1)l1 + 1}

pq − 1

≥ (pq − 1)(1 + p2 − p3) + p2(q − 1)(p− q)(p3 − p2)

pq − 1
( since l1, l2 ≥ 1)

≥ p2(p− 1)[p2(p− q)(q − 1)− (pq − 1)]

pq − 1

≥ p3(p− 1)[p(p− q)(q − 1)− q]

pq − 1

≥ p3(p− 1)[p(p− q)− q]

pq − 1
> 0,

since p2−pq−q > 0, for all p and q such that p ̸= 2 and q ̸= 3. This concludes
the proof. □

The following theorem gives us some finite non-commutative rings R
for which ΓR is integral, Q-integral but not hyperenergetic as well as Q-
hyperenergetic.

Theorem 4.6. ΓR is integral, Q-integral but not hyperenergetic and Q-
hyperenergetic if

(a) R
Z(R) is isomorphic to Zp × Zp.

(b) |R| = p4 with unity and
(i) |Z(R)| = p such that ΓR = Kp2+p+1.p2−p.
(ii) |Z(R)| = p2.

(c) |R| = p5 with unity and
(i) |Z(R)| = p2 such that ΓR = Kp2+p+1.p3−p2.
(ii) |Z(R)| = p3.

(d) |R| = p2q and Z(R) = {0} such that t ∈ {p, q, p2, pq} and
(t− 1) | (p2q − 1).

(e) |R| = p3q with unity and
(i) |Z(R)| = pq.
(ii) |Z(R)| = p2 such that (p− 1) | (pq − 1) or (q − 1) | (pq − 1).

Proof. For the aforementioned rings R, Spec(ΓR) and Q-spec(ΓR) contain
only integers so ΓR is integral as well as Q-integral. Also,

LE+(ΓR) = LE(ΓR) = E(ΓR).
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Therefore, in view of Theorems 4.1–4.5, ΓR is not hyperenergetic and Q-
hyperenergetic. □

Finally we wrap up this paper noting that as a consequence of Theorem
4.6, ΓR of all the rings taken into consideration in Theorem 3.6–3.8 are
integral, Q-integral but not hyperenergetic as well as Q-hyperenergetic.
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FINITE RINGS

M. SHARMA AND R. K. NATH

متناهی حلقه های غیرجابجایی گراف های انرژی و لاپلاسی طیف

نات٢ کانتی راجات و شارما١ مونالیشا

هند آسام، سونیتپور، ناپام، تزپور، دانشگاه ریاضی، علوم ١,٢گروه

گراف های علامت بدون لاپلاسی طیف/انرژی همچنین و لاپلاسی طیف/انرژی انرژی، طیف، مقاله، این در
R متناهی حلقه های خاص، به طور است. شده بررسی متناهی غیرجابجایی حلقه های برخی غیرجابجایی
همچنین، می شوند. بررسی هستند، اول اعداد q و p که زمانی ،|R| = p٢, p٣, p۴, p۵, p٢q, p٣q که
حلقه های کلی، به طور و گرفته اند؛ قرار بررسی مورد p+٢ و n = ۴, ۵ برای n-مرکزی متناهی حلقه های
محاسبات گرفته اند. قرار مطالعه مورد است، یکریخت Zp×Zp با آن ها مرکزی خارج قسمت که متناهی
آیا که کرده ایم مشخص علاوه، به هستند. L-صحیح حلقه ها این غیرجابجایی گراف های که می دهد نشان
Q-فراانرژتیک یا L-فراانرژتیک، فراانرژتیک، Q-صحیح، صحیح، حلقه ها، این غیرجابجایی گراف های

خیر. یا هستند

متناهی. حلقه غیرجابجایی، گراف صحیح، گراف گراف، طیف کلیدی: کلمات
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