

ON THE COFINITENESS OF LOCAL COHOMOLOGY MODULES

G. Pirmohammadi

ABSTRACT. Let \mathfrak{a} be an ideal of a Noetherian ring R such that the R -modules $H_{\mathfrak{a}}^1(M)$ and $H_{\mathfrak{a}}^3(M)$ are \mathfrak{a} -cofinite, for all finitely generated R -modules M . In this paper, it is shown that the R -modules $H_{\mathfrak{a}}^i(M)$ are \mathfrak{a} -cofinite, for all finitely generated R -modules M and all integers $i \in \mathbb{N}_0$.

1. INTRODUCTION

Throughout this paper, let R denote a commutative Noetherian ring (with identity) and let \mathfrak{a} be an ideal of R . In this paper, we will denote $\text{Supp } R/\mathfrak{a} = \{\mathfrak{p} \in \text{Spec } R : \mathfrak{p} \supseteq \mathfrak{a}\}$ by $V(\mathfrak{a})$. In addition, the symbol \mathbb{N} (respectively \mathbb{N}_0) will denote the set of positive (respectively non-negative) integers. The i th local cohomology module of an R -module M with support in $V(\mathfrak{a})$ is defined as:

$$H_{\mathfrak{a}}^i(M) = \varinjlim_{n \in \mathbb{N}} \text{Ext}_R^i(R/\mathfrak{a}^n, M).$$

For further information on the concept of local cohomology, the reader may consult [7] and [12].

It is a well known result that if (R, \mathfrak{m}, k) is a Noetherian local ring, then for each finitely generated R -module M and each $i \in \mathbb{N}_0$, the R -module $H_{\mathfrak{m}}^i(M)$ is Artinian, hence the R -module $\text{Hom}_R(k, H_{\mathfrak{m}}^i(M))$ is finitely generated. Taking this fact, Grothendieck in his algebraic geometry seminar of 1962, (see [11, Exposé XIII, Conjecture 1.1]) conjectured the following:

Conjecture: *For each ideal \mathfrak{a} of a Noetherian ring R and each finitely generated R -module M , the R -modules $\text{Hom}_R(R/\mathfrak{a}, H_{\mathfrak{a}}^i(M))$ are finitely generated for all $i \in \mathbb{N}_0$.*

Two years later, Hartshorne provided a counterexample in [13, Section 3], to show that this question does not have an affirmative answer in general. Furthermore, in the same paper he defined an R -module M to be \mathfrak{a} -cofinite if

MSC(2020): Primary: 13D45; Secondary: 14B15.

Keywords: Cofinite module; Local cohomology; Noetherian ring; Krull dimension.

Received: 4 April 2024, Accepted: 23 July 2024.

the support of M is contained in $V(\mathfrak{a})$ and $\text{Ext}_R^i(R/\mathfrak{a}, M)$ is finitely generated for each $i \in \mathbb{N}_0$ and posed the following question:

Question 1: *For which Noetherian rings R and ideals \mathfrak{a} of R , are the modules $H_{\mathfrak{a}}^i(M)$ \mathfrak{a} -cofinite, for all finitely generated R -modules M and all $i \in \mathbb{N}_0$?*

In the sequel, the notation $\mathcal{C}(R, \mathfrak{a})_{cof}$ denotes the category of all \mathfrak{a} -cofinite R -modules and $\mathcal{C}^1(R, \mathfrak{a})_{cof}$ denotes the category of all R -modules $M \in \mathcal{C}(R, \mathfrak{a})_{cof}$ such that $\dim M \leq 1$. Also, throughout this paper, let $\mathcal{I}(R)$ be the class of all ideals \mathfrak{a} of R such that $H_{\mathfrak{a}}^i(U) \in \mathcal{C}(R, \mathfrak{a})_{cof}$, for all finitely generated R -modules U and all $i \in \mathbb{N}_0$.

Concerning Question 1, there are several remarkable results in the literature; see e.g. [2, 5, 8, 9, 10, 14, 15, 16, 18, 19]. In fact, in these articles many of authors have found several classes of ideals of a Noetherian ring R satisfying the condition of Question 1. In [4], Bahmanpour solved Question 1, by obtaining an explicit description of the set $\mathcal{I}(R)$ for any Noetherian ring R . More precisely, in [4, Theorem 4.10], he proved that for each ideal \mathfrak{a} of a Noetherian ring R , $\mathfrak{a} \in \mathcal{I}(R)$ if and only if $H_{\mathfrak{a}}^i(R) \in \mathcal{C}^1(R, \mathfrak{a})_{cof}$ for each integer $i \geq 2$. Moreover, in the same paper he proved that in the case that (R, \mathfrak{m}) is a local ring, the condition $\mathfrak{a} \in \mathcal{I}(R)$ is equivalent to the condition that for each minimal prime ideal \mathfrak{P} of \hat{R} (the \mathfrak{m} -adic completion of R), $\dim \hat{R}/(\mathfrak{a}\hat{R} + \mathfrak{P}) \leq 1$ or $\text{cd}(\mathfrak{a}\hat{R}, \hat{R}/\mathfrak{P}) \leq 1$.

In this paper, we take a step in this direction. Precisely, we show that for a given ideal \mathfrak{a} of a Noetherian ring R , $\mathfrak{a} \in \mathcal{I}(R)$ if and only if the R -modules $H_{\mathfrak{a}}^1(M)$ and $H_{\mathfrak{a}}^3(M)$ are \mathfrak{a} -cofinite for all finitely generated R -modules M .

Throughout this paper, for each ideal \mathfrak{b} of R and each R -module M , $\Gamma_{\mathfrak{b}}(M)$ denotes the submodule $\bigcup_{n \in \mathbb{N}} (0 :_M \mathfrak{b}^n)$ of M . We refer the reader to [7, 17] for basic results, notations, and terminology not given in this paper.

2. MAIN RESULTS

The main purpose of this section is to prove Theorem 2.8, which asserts that for a given ideal \mathfrak{a} of a Noetherian ring R , if the R -modules $H_{\mathfrak{a}}^1(M)$ and $H_{\mathfrak{a}}^3(M)$ are \mathfrak{a} -cofinite, for all finitely generated R -modules M , then the R -modules $H_{\mathfrak{a}}^i(M)$ are \mathfrak{a} -cofinite, for all integers i and all finitely generated R -modules M .

Let us start this section with some useful lemmas.

Lemma 2.1. (See [1, Lemma 2.3]) *Let \mathfrak{a} be an ideal of a Noetherian ring R and \mathcal{M} be a Serre subcategory of the category of R -modules. Let $n \in \mathbb{N}_0$ and M be an R -module such that $\text{Ext}_R^j(R/\mathfrak{a}, H_{\mathfrak{a}}^i(M)) \in \mathcal{M}$, for all $0 \leq i < n$ and*

all $j \in \mathbb{N}_0$. If the R -modules $\text{Ext}_R^n(R/\mathfrak{a}, M)$ and $\text{Ext}_R^{n+1}(R/\mathfrak{a}, M)$ are in \mathcal{M} , then the R -modules $\text{Hom}_R(R/\mathfrak{a}, H_{\mathfrak{a}}^n(M))$ and $\text{Ext}_R^1(R/\mathfrak{a}, H_{\mathfrak{a}}^n(M))$ are in \mathcal{M} .

Lemma 2.2. (See [6, Proposition 2.6]) *Let \mathfrak{a} be an ideal of a Noetherian ring R and M be an R -module such that $\dim M \leq 1$ and $\text{Supp } M \subseteq V(\mathfrak{a})$. Then the following statements are equivalent:*

- (1) M is \mathfrak{a} -cofinite.
- (2) The R -modules $\text{Hom}_R(R/\mathfrak{a}, M)$ and $\text{Ext}_R^1(R/\mathfrak{a}, M)$ are finitely generated.

Lemma 2.3. (See [6, Therem 2.7]) *Let \mathfrak{a} be an ideal of a Noetherian ring R . Then $\mathcal{C}^1(R, \mathfrak{a})_{\text{cof}}$ is an Abelian category.*

Lemma 2.4. (See [3, Lemma 2.1]) *For an ideal \mathfrak{a} of a Noetherian ring R , the following statements are equivalent:*

- (1) $\mathfrak{a} \in \mathcal{I}(R)$.
- (2) $H_{\mathfrak{a}}^i(R) \in \mathcal{C}^1(R, \mathfrak{a})_{\text{cof}}$, for all integers $i \geq 2$.
- (3) For each finitely generated R -module M , $H_{\mathfrak{a}}^i(M) \in \mathcal{C}^1(R, \mathfrak{a})_{\text{cof}}$, for all integers $i \geq 2$.

Lemma 2.5. (See [10, Proposition 2]) *Let $\mathfrak{a}, \mathfrak{b}$ be two ideals of a Noetherian ring R and M be an R -module with $\mathfrak{b}M = 0$ and $\text{Supp } M \subseteq V(\mathfrak{a})$. Then M is \mathfrak{a} -cofinite (as an R -module) if and only if M is $(\mathfrak{a} + \mathfrak{b})/\mathfrak{b}$ -cofinite (as an R/\mathfrak{b} -module).*

Lemma 2.6. (See [18, Corollary 3.4]) *Let \mathfrak{a} be an ideal of a Noetherian ring R and $x \in \mathfrak{a}$. Let M be an R -module with $\text{Supp } M \subseteq V(\mathfrak{a})$ such that the R -module $(0 :_M x)$ and M/xM are \mathfrak{a} -cofinite. Then M is \mathfrak{a} -cofinite.*

The following lemma plays a key role in the proof of Theorem 2.8.

Lemma 2.7. *Let (R, \mathfrak{m}) be a Noetherian local ring and \mathfrak{a} be an ideal of R . Then the following statements hold:*

- (1) $\mathfrak{a} \in \mathcal{I}(R)$.
- (2) The R -modules $H_{\mathfrak{a}}^1(M)$, $H_{\mathfrak{a}}^3(R)$ are \mathfrak{a} -cofinite, for all finitely generated R -modules M .
- (3) For each finitely generated R -module M , $H_{\mathfrak{a}}^i(M) \in \mathcal{C}^1(R, \mathfrak{a})_{\text{cof}}$, for all integers $i \geq 2$.

Proof. (1) \Rightarrow (2) The assertion is trivial.

(1) \Leftrightarrow (3) The assertion holds by Lemma 2.4.

(2) \Rightarrow (1) We argue by induction on $d = \dim R$. For $d = 0$, the assertion follows from *Grothendieck's Vanishing Theorem* (see [7, Theorem 6.1.2]). Suppose, inductively, that $d > 0$ and the result has been proved for smaller values of d . Assume that M is a finitely generated R -module. Since $\Gamma_{\mathfrak{a}}(R)M \subseteq \Gamma_{\mathfrak{a}}(M)$, so $M/\Gamma_{\mathfrak{a}}(M)$ has an $R/\Gamma_{\mathfrak{a}}(R)$ -module structure by means of the natural map $\pi : R \rightarrow R/\Gamma_{\mathfrak{a}}(R)$. For each $i \in \mathbb{N}$, we have

$$H_{\mathfrak{a}}^i(M) \simeq H_{\mathfrak{a}}^i(M/\Gamma_{\mathfrak{a}}(M)) \simeq H_{\mathfrak{a} + \Gamma_{\mathfrak{a}}(R)/\Gamma_{\mathfrak{a}}(R)}^i(M/\Gamma_{\mathfrak{a}}(M)).$$

In addition, by *Independence Theorem* (see [7, Theorem 4.2.1]) and Lemma 2.5, one sees that $\bigoplus_{i \geq 2} H_{\mathfrak{a}}^i(M) \in \mathcal{C}(R, \mathfrak{a})_{cof}$ if and only if

$$\bigoplus_{i \geq 2} H_{\mathfrak{a} + \Gamma_{\mathfrak{a}}(R)/\Gamma_{\mathfrak{a}}(R)}^i(M/\Gamma_{\mathfrak{a}}(M)) \in \mathcal{C}(R/\Gamma_{\mathfrak{a}}(R), \mathfrak{a} + \Gamma_{\mathfrak{a}}(R)/\Gamma_{\mathfrak{a}}(R))_{cof}.$$

Also, from the hypothesis (ii), *Independence Theorem* and Lemma 2.5, we can deduce that the $R/\Gamma_{\mathfrak{a}}(R)$ -modules

$$H_{\mathfrak{a} + \Gamma_{\mathfrak{a}}(R)/\Gamma_{\mathfrak{a}}(R)}^1(N), H_{\mathfrak{a} + \Gamma_{\mathfrak{a}}(R)/\Gamma_{\mathfrak{a}}(R)}^3(N),$$

are $\mathfrak{a} + \Gamma_{\mathfrak{a}}(R)/\Gamma_{\mathfrak{a}}(R)$ -cofinite, for all finitely generated $R/\Gamma_{\mathfrak{a}}(R)$ -modules N . So, by replacing R , \mathfrak{a} and M with $R/\Gamma_{\mathfrak{a}}(R)$, $\mathfrak{a} + \Gamma_{\mathfrak{a}}(R)/\Gamma_{\mathfrak{a}}(R)$ and $M/\Gamma_{\mathfrak{a}}(M)$, we can make the additional assumption that $\Gamma_{\mathfrak{a}}(R) = 0$ and $\Gamma_{\mathfrak{a}}(M) = 0$. Then, by *Prime Avoidance Theorem*, we have

$$\mathfrak{a} \not\subseteq \left(\bigcup_{\mathfrak{p} \in \text{Ass}_R R} \mathfrak{p} \right) \cup \left(\bigcup_{\mathfrak{q} \in \text{Ass}_R M} \mathfrak{q} \right).$$

Thus, we can find an element $x \in \mathfrak{a}$ with $x \notin \bigcup_{\mathfrak{p} \in \text{Ass}_R R} \mathfrak{p}$ and $x \notin \bigcup_{\mathfrak{q} \in \text{Ass}_R M} \mathfrak{q}$. Then, it is clear that $\dim R/xR = d - 1$. Also, from the hypothesis (ii), *Independence Theorem* and Lemma 2.5, it follows that the R/xR -modules $H_{\mathfrak{a} + xR/xR}^1(L)$, $H_{\mathfrak{a} + xR/xR}^3(L)$ are $\mathfrak{a} + xR/xR$ -cofinite, for every finitely generated R/xR -module L . So, by inductive hypothesis we have

$$\mathfrak{a} + xR/xR \in \mathcal{J}(R/xR).$$

Therefore, Lemma 2.3 implies that

$$H_{\mathfrak{a} + xR/xR}^i(M/xM) \in \mathcal{C}^1(R/xR, \mathfrak{a} + xR/xR)_{cof},$$

for all integers $i \geq 2$. Hence, by *Independence Theorem* and Lemma 2.5, we can deduce that $H_{\mathfrak{a}}^i(M/xM) \in \mathcal{C}^1(R, \mathfrak{a})_{cof}$, for all integers $i \geq 2$. As $x \in \mathfrak{a}$, for each $i \in \mathbb{N}_0$, we see that $\dim H_{\mathfrak{a}}^i(M) \leq 1$ if and only if $\dim (0 :_{H_{\mathfrak{a}}^i(M)} x) \leq 1$. Moreover, the exact sequence

$$0 \longrightarrow M \xrightarrow{x} M \longrightarrow M/xM \longrightarrow 0$$

induces a long exact sequence

$$\begin{aligned} \cdots &\longrightarrow H_{\mathfrak{a}}^j(M) \xrightarrow{x} H_{\mathfrak{a}}^j(M) \longrightarrow H_{\mathfrak{a}}^j(M/xM) \\ &\longrightarrow H_{\mathfrak{a}}^{j+1}(M) \xrightarrow{x} H_{\mathfrak{a}}^{j+1}(M) \longrightarrow \cdots. \end{aligned}$$

Consequently, for all integers $j \geq 0$, there is a short exact sequence,

$$0 \longrightarrow H_{\mathfrak{a}}^j(M)/xH_{\mathfrak{a}}^j(M) \longrightarrow H_{\mathfrak{a}}^j(M/xM) \longrightarrow (0 :_{H_{\mathfrak{a}}^{j+1}(M)} x) \longrightarrow 0,$$

which implies that $\dim(0 :_{H_{\mathfrak{a}}^i(M)} x) \leq 1$, for all integers $i \geq 3$. Therefore, $\dim H_{\mathfrak{a}}^i(M) \leq 1$, for all integers $i \geq 3$. Hence, by Lemma 2.3, the R -module $(0 :_{H_{\mathfrak{a}}^3(M)} x)$ is \mathfrak{a} -cofinite since $H_{\mathfrak{a}}^3(M) \in \mathcal{C}^1(R, \mathfrak{a})_{cof}$. Therefore, by the exact sequence

$$0 \longrightarrow H_{\mathfrak{a}}^2(M)/xH_{\mathfrak{a}}^2(M) \longrightarrow H_{\mathfrak{a}}^2(M/xM) \longrightarrow (0 :_{H_{\mathfrak{a}}^3(M)} x) \longrightarrow 0,$$

it is concluded that $H_{\mathfrak{a}}^2(M)/xH_{\mathfrak{a}}^2(M)$ is \mathfrak{a} -cofinite. By the exact sequence

$$\Gamma_{\mathfrak{a}}(M/xM) \longrightarrow (0 :_{H_{\mathfrak{a}}^1(M)} x) \longrightarrow 0,$$

one deduces that $(0 :_{H_{\mathfrak{a}}^1(M)} x)$ is a finitely generated R -module. Therefore, the exact sequences

$$0 \longrightarrow (0 :_{H_{\mathfrak{a}}^1(M)} x) \longrightarrow H_{\mathfrak{a}}^1(M) \longrightarrow xH_{\mathfrak{a}}^1(M) \longrightarrow 0,$$

and

$$0 \longrightarrow xH_{\mathfrak{a}}^1(M) \longrightarrow H_{\mathfrak{a}}^1(M) \longrightarrow H_{\mathfrak{a}}^1(M)/xH_{\mathfrak{a}}^1(M) \longrightarrow 0,$$

show that $H_{\mathfrak{a}}^1(M)/xH_{\mathfrak{a}}^1(M)$ is \mathfrak{a} -cofinite. Therefore, the exact sequence

$$0 \longrightarrow H_{\mathfrak{a}}^1(M)/xH_{\mathfrak{a}}^1(M) \longrightarrow H_{\mathfrak{a}}^1(M/xM) \longrightarrow (0 :_{H_{\mathfrak{a}}^2(M)} x) \longrightarrow 0,$$

implies that $(0 :_{H_{\mathfrak{a}}^2(M)} x)$ is \mathfrak{a} -cofinite. Since $x \in \mathfrak{a}$ and both of the R -modules $(0 :_{H_{\mathfrak{a}}^2(M)} x)$, $H_{\mathfrak{a}}^2(M)/xH_{\mathfrak{a}}^2(M)$ are \mathfrak{a} -cofinite, so by Lemma 2.6, the R -module $H_{\mathfrak{a}}^2(M)$ is \mathfrak{a} -cofinite.

Now, using induction on i , we prove that the R -modules

$$\Gamma_{\mathfrak{a}}(M), H_{\mathfrak{a}}^1(M), H_{\mathfrak{a}}^2(M), H_{\mathfrak{a}}^3(M), \dots, H_{\mathfrak{a}}^i(M),$$

are \mathfrak{a} -cofinite for all integers $i \geq 3$. For $i = 3$, there is nothing to prove. Suppose, inductively, that $i > 3$ and the result has been proved for $i - 1$. Then, by inductive hypothesis, the R -modules

$$\Gamma_{\mathfrak{a}}(M), H_{\mathfrak{a}}^1(M), H_{\mathfrak{a}}^2(M), H_{\mathfrak{a}}^3(M), \dots, H_{\mathfrak{a}}^{i-1}(M),$$

are \mathfrak{a} -cofinite. Therefore, by Lemma 2.1, the R -modules

$$\text{Hom}_R(R/\mathfrak{a}, H_{\mathfrak{a}}^i(M)), \text{Ext}_R^1(R/\mathfrak{a}, H_{\mathfrak{a}}^i(M)),$$

are finitely generated. Since $\dim H_{\mathfrak{a}}^i(M) \leq 1$, it follows from Lemma 2.2, that the R -module $H_{\mathfrak{a}}^i(M)$ is \mathfrak{a} -cofinite. This completes the inductive hypothesis. So that, $\mathfrak{a} \in \mathcal{J}(R)$. \square

Now we are ready to state and prove our main result.

Theorem 2.8. *Let R be a Noetherian ring and \mathfrak{a} be an ideal of R . Then the following statements hold:*

- (1) $\mathfrak{a} \in \mathcal{J}(R)$.
- (2) $H_{\mathfrak{a}}^1(M)$ and $H_{\mathfrak{a}}^3(M)$ are \mathfrak{a} -cofinite for every finitely generated R -module M .

Proof. (1) \Rightarrow (2) The assertion is obvious.

(2) \Rightarrow (1) We claim that $\dim H_{\mathfrak{a}}^i(R) \leq 1$, for all integers $i \geq 2$. Assume that this is not the case. Then there is an integer $j \geq 2$ such that $\dim H_{\mathfrak{a}}^j(R) \geq 2$. Thus, there exists a maximal prime ideal \mathfrak{n} of R such that $\dim H_{\mathfrak{a}R_{\mathfrak{n}}}^j(R_{\mathfrak{n}}) = \dim (H_{\mathfrak{a}}^j(R))_{\mathfrak{n}} \geq 2$. From the hypothesis (ii), it is concluded that the $R_{\mathfrak{n}}$ -modules $H_{\mathfrak{a}R_{\mathfrak{n}}}^1(N)$ and $H_{\mathfrak{a}R_{\mathfrak{n}}}^3(N)$ are $\mathfrak{a}R_{\mathfrak{n}}$ -cofinite, for every finitely generated $R_{\mathfrak{n}}$ -module N . Hence, by Lemma 2.7, we have $\dim (H_{\mathfrak{a}}^j(R))_{\mathfrak{n}} = \dim H_{\mathfrak{a}R_{\mathfrak{n}}}^j(R_{\mathfrak{n}}) \leq 1$, which is a contradiction. Therefore, $\dim H_{\mathfrak{a}}^i(R) \leq 1$, for all integers $i \geq 2$. Moreover, by the hypothesis, the R -modules $\Gamma_{\mathfrak{a}}(R)$ and $H_{\mathfrak{a}}^1(R)$ are \mathfrak{a} -cofinite. Therefore, applying the method used in the proof of Lemma 2.7, one sees that the R -modules $H_{\mathfrak{a}}^i(R)$ are \mathfrak{a} -cofinite for all integers $i \in \mathbb{N}_0$. Consequently, $H_{\mathfrak{a}}^i(R) \in \mathcal{C}^1(R, \mathfrak{a})_{cof}$, for all integers $i \geq 2$. Therefore, $\mathfrak{a} \in \mathcal{J}(R)$, by Lemma 2.4. \square

Acknowledgments

The author is deeply grateful to the referees for their careful reading of the paper and valuable suggestions.

REFERENCES

1. N. Abazari and K. Bahmanpour, Extension functors of local cohomology modules and Serre categories of modules, *Taiwanese J. Math.*, **19** (2015), 211–220.
2. K. Bahmanpour, Cohomological dimension, cofiniteness and Abelian categories of cofinite modules, *J. Algebra*, **484** (2017), 168–197.
3. K. Bahmanpour, Local cohomology, cofiniteness and homological functors of modules, *Czechoslovak Math. J.*, **72**(147) (2022), 541–558.
4. K. Bahmanpour, On a question of Hartshorne, *Collect. Math.*, **72** (2021), 527–568.
5. K. Bahmanpour and R. Naghipour, Cofiniteness of local cohomology modules for ideals of small dimension, *J. Algebra*, **321** (2009), 1997–2011.

6. K. Bahmanpour, R. Naghipour and M. Sedghi, On the category of cofinite modules which is Abelian, *Proc. Amer. Math. Soc.*, **142** (2014), 1101–1107.
7. M. P. Brodmann and R. Y. Sharp, *Local cohomology; an algebraic introduction with geometric applications*, Cambridge University Press, Cambridge, 1998.
8. G. Chiriacescu, Cofiniteness of local cohomology modules over regular local rings, *Bull. Lond. Math. Soc.*, **32** (2000), 1–7.
9. D. Delfino, On the Cofiniteness of local cohomology modules, *Math. Proc. Cambridge Philos. Soc.*, **115** (1994), 79–84.
10. D. Delfino and T. Marley, Cofinite modules and local cohomology, *J. Pure Appl. Algebra*, **121** (1997), 45–52.
11. A. Grothendieck, *Cohomologie local des faisceaux cohérents et théorèmes de lefschetz locaux et globaux (SGA2)*, North-Holland, Amsterdam, 1968.
12. A. Grothendieck, *Local cohomology*, Notes by R. Hartshorne, Lecture Notes in Math. 862, Springer, New York, 1966.
13. R. Hartshorne, Affine duality and cofiniteness, *Invent. Math.*, **9** (1970), 145–164.
14. C. Huneke and J. Koh, Cofiniteness and vanishing of local cohomology modules, *Math. Proc. Cambridge Philos. Soc.*, **110** (1991), 421–429.
15. K.-I. Kawasaki, Cofiniteness of local cohomology modules for principal ideals, *Bull. Lond. Math. Soc.*, **30** (1998), 241–246.
16. T. Marley and J. C. Vassilev, Cofiniteness and associated primes of local cohomology modules, *J. Algebra*, **256** (2002), 180–193.
17. H. Matsumura, *Commutative ring theory*, Cambridge University Press, Cambridge, UK, 1986.
18. L. Melkersson, Modules cofinite with respect to an ideal, *J. Algebra*, **285** (2005), 649–668.
19. K. I. Yoshida, Cofiniteness of local cohomology modules for ideals of dimension one, *Nagoya Math. J.*, **147** (1997), 179–191.

Gholamreza Pirmohammadi

Payame Noor University, P.O. Box 19395-3697, Tehran, Iran.

Email: gh_pirmohammadi@pnu.ac.ir

ON THE COFINITENESS OF LOCAL COHOMOLOGY MODULES

G. PIRMOHAMMADI

هم‌متناهی بودن مدول‌های کوهمولوژی موضعی

غلامرضا پیرمحمدی

دانشگاه پیام نور، تهران، ایران

فرض کنیم \mathfrak{a} ایده‌آلی از حلقه نوتری R باشد به‌طوری که برای هر R -مدول متناهی مولد M ، R -مدول‌های $H_{\mathfrak{a}}^i(M)$ و $H_{\mathfrak{a}}^{\geq i}(M)$ هم‌متناهی باشند. در این مقاله ثابت شده است که برای هر R -مدول متناهی مولد M و به ازای هر $i \in \mathbb{N}$ ، $H_{\mathfrak{a}}^i(M)$ \mathfrak{a} -هم‌متناهی است.

کلمات کلیدی: مدول هم‌متناهی، کوهمولوژی موضعی، حلقه نوتری، بعد کرول.