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ON THE COFINITENESS OF LOCAL COHOMOLOGY MODULES
G. Pirmohammadi

ABSTRACT. Let a be an ideal of a Noetherian ring R such that the R-modules H} (M)
and H2(M) are a-cofinite, for all finitely generated R-modules M. In this paper, it is
shown that the R-modules H:(M) are a-cofinite, for all finitely generated R-modules
M and all integers i € Nj.

1. INTRODUCTION

Throughout this paper, let R denote a commutative Noetherian ring
(with identity) and let a be an ideal of R. In this paper, we will denote
SuppR/a = {p € SpecR : p DO a} by V(a). In addition, the symbol N
(respectively Ny) will denote the set of positive (respectively non-negative)
integers. The ith local cohomology module of an R-module M with support
in V(a) is defined as:

Hy(M) = lip Extp(R/a", M).
neN
For further information on the concept of local cohomology, the reader may
consult [7] and [12].

It is a well known result that if (R, m, k) is a Noetherian local ring, then for
each finitely generated R-module M and each i € Ny, the R-module H’ (M) is
Artinian, hence the R-module Hompg(k, H. (M)) is finitely generated. Taking
this fact, Grothendieck in his algebraic geometry seminar of 1962, (see [!1,
Exposé XIII, Conjecture 1.1]) conjectured the following:

Conjecture: For each ideal a of a Noetherian ring R and each finitely
generated R-module M, the R-modules Hompg(R/ a, H{(M)) are finitely gen-
erated for all v € Ny.

Two years later, Hartshorne provided a counterexample in [13, Section 3],
to show that this question does not have an affirmative answer in general.
Furthermore, in the same paper he defined an R-module M to be a-cofinite if
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the support of M is contained in V (a) and Ext’(R/ a, M) is finitely generated
for each © € Ny and posed the following question:

Question 1: For which Noetherian rings R and ideals a of R, are the
modules H.(M) a-cofinite, for all finitely generated R-modules M and all
1 € Ny?

In the sequel, the notation ¢ (R, a).,s denotes the category of all a-cofinite
R-modules and %'(R,a).,s denotes the category of all R-modules
M € €(R,a)c,s such that dimM < 1. Also, throughout this paper, let
#(R) be the class of all ideals a of R such that H.(U) € € (R, a)qf, for all
finitely generated R-modules U and all 7 € Nj.

Concerning Question 1, there are several remarkable results in the liter-

ature; see e.g. [2, 5, 8, 0, 10, 14, 15, 16, 18, 19]. In fact, in these articles
many of authors have found several classes of ideals of a Noetherian ring R
satisfying the condition of Question 1. In [1], Bahmanpour solved Question

1, by obtaining an explicit description of the set .#(R) for any Noetherian
ring R. More precisely, in [1, Theorem 4.10], he proved that for each ideal
a of a Noetherian ring R, a € .#(R) if and only if Hi(R) € €*(R,a).y for
each integer ¢ > 2. Moreover, in the same paper he proved that in the case
that (R, m) is a local ring, the condition a € .#(R) is equivalent to the con-
dition that for each minimal prime ideal ¢ of R (the m-adic completion of
R),dimR/(a R+B) <1 or cd(a R, R/P) < 1.

In this paper, we take a step in this direction. Precisely, we show that for a
given ideal a of a Noetherian ring R, a € .#(R) if and only if the R-modules
H(M) and H2(M) are a-cofinite for all finitely generated R-modules M.

Throughout this paper, for each ideal b of R and each R-module M, I'y(M)
denotes the submodule U,cn(0 13y 6") of M. We refer the reader to [7, 17]
for basic results, notations, and terminology not given in this paper.

2. MAIN RESULTS

The main purpose of this section is to prove Theorem 2.8, which asserts
that for a given ideal a of a Noetherian ring R, if the R-modules H}(M)
and H2(M) are a-cofinite, for all finitely generated R-modules M, then the
R-modules H.(M) are a-cofinite, for all integers i and all finitely generated

R-modules M.
Let us start this section with some useful lemmas.

Lemma 2.1. (See [I, Lemma 2.3]) Let a be an ideal of a Noetherian ring R
and A be a Serre subcategory of the category of R-modules. Let n € Ny and
M be an R-module such that Ext},(R/ a, H.(M)) € 4, for all 0 <i < n and
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all j € Ny. If the R-modules Ext(R/a, M) and Ext%™ (R/ a, M) are in A,
then the R-modules Homg(R/ a, H(M)) and Extp(R/ a, H*(M)) are in A .

Lemma 2.2. (See [0, Proposition 2.6]) Let a be an ideal of a Noetherian ring
R and M be an R-module such that dim M < 1 and Supp M C V(a). Then
the following statements are equivalent:
(1) M is a-cofinite.
(2) The R-modules Homp(R/a, M) and Extp(R/a,M) are finitely
generated.

Lemma 2.3. (See [0, Therem 2.7]) Let a be an ideal of a Noetherian ring R.
Then €' (R, a)qof is an Abelian category.

Lemma 2.4. (See [3, Lemma 2.1]) For an ideal a of a Noetherian ring R,
the following statements are equivalent:
(1) ae S(R).
(2) HY(R) € €Y (R, a)cor, for all integers i > 2.
(3) For each finitely generated R-module M, H.(M) € €1(R, a)cf, for all
integers v > 2.

Lemma 2.5. (See [10, Proposition 2]) Let a, b be two ideals of a Noetherian
ring R and M be an R-module with b M =0 and Supp M C V(a). Then M
is a-cofinite (as an R-module) if and only if M is (a+ b)/ b-cofinite (as an
R/ b-module).

Lemma 2.6. (See [18, Corollary 3.4]) Let a be an ideal of a Noetherian ring
R and x € a. Let M be an R-module with Supp M C V(a) such that the
R-module (0 :p; ) and M /xM are a-cofinite. Then M is a-cofinite.

The following lemma plays a key role in the proof of Theorem 2.8.

Lemma 2.7. Let (R,m) be a Noetherian local ring and a be an ideal of R.
Then the following statements hold:
(1) a € Z(R).
(2) The R-modules HY(M), H(R) are a-cofinite, for all finitely generated
R-modules M.
(3) For each finitely generated R-module M, H:(M) € €' (R, a)cof, for all
integers v > 2.

Proof. (1)==-(2) The assertion is trivial.
(1)<=(3) The assertion holds by Lemma 2.4.
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(2)==(1) We argue by induction on d = dimR. For d = 0, the as-
sertion follows from Grothendieck’s Vanishing Theorem (see [7, Theorem
6.1.2]). Suppose, inductively, that d > 0 and the result has been proved
for smaller values of d. Assume that M is a finitely generated R-module.
Since I'q(R)M C T'y(M), so M/Tq(M) has an R/I'y(R)-module structure by
means of the natural map 7 : R — R/I'4(R). For each i € N, we have

Hy(M) o~ Hy(M/To(M)) = Hy 1 gy rom)(M/Ta(M)).

In addition, by Independence Theorem (see |7, Theorem 4.2.1]) and Lemma
2.5, one sees that (D> HL(M) € € (R, a)qs if and only if

Diz2H v, (ry/ro(r)(M/Ta(M)) € €(R/Ta(R), a +Ta(R)/Ta(R))cor-

Also, from the hypothesis (ii), Independence Theorem and Lemma 2.5, we
can deduce that the R/T' (R)-modules

Ha rimyromy (V) He oy gy (V)
are a+1"4(R)/T'q(R)-cofinite, for all finitely generated R/I'y(R)-modules N.
So, by replacing R, a and M with R/T'((R), a+1'4(R)/T«(R) and M /T (M),
we can make the additional assumption that I'y(R) = 0 and ['((M) = 0.
Then, by Prime Avoidance Theorem, we have

oz | U »|Ul U

peAssg R q€Assg M

Thus, we can find an element z € a with & U, caq, 2 P a0d @ & Uycngsp a0 9-
Then, it is clear that dim R/zR = d — 1. Also, from the hypothesis (ii),
Independence Theorem and Lemma 2.5, it follows that the R/xR-modules
H&HR/xR(L), H3+IR/xR(L) are a+xR/xR-cofinite, for every finitely gener-

ated R/xR-module L. So, by inductive hypothesis we have
a+zR/zR € (R/xR).
Therefore, Lemma 2.3 implies that
H§+xR/xR(M/xM) € ¢ (R/zR,a+xR/TR)q0p,

for all integers ¢ > 2. Hence, by Independence Theorem and Lemma 2.5, we
can deduce that H{(M/xM) € € (R, a).y, for all integers i > 2. As z € a,
for each i € Ny, we see that dim H}(M) < 1if and only if dim (0 :5:(ap) ) < 1.
Moreover, the exact sequence

0— M- M— M/zM — 0
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induces a long exact sequence
oo — HI(M) s HI(M) — H)(M/xM)
— HIPY (M) 5 HIYY M) — -+
Consequently, for all integers 5 > 0, there is a short exact sequence,
0 — Hy(M)/xHy(M) — Ha(M/xM) — (0 : g1y ) — 0,

which implies that dim (0 :giary ¥) < 1, for all integers @ > 3. Therefore,
dim H}(M) < 1, for all integers ¢ > 3. Hence, by Lemma 2.3, the R-module

(0 :gsary ) is a-cofinite since H3 (M) € €' (R,a)q5. Therefore, by the exact
sequence

0 — HZ(M)/xHZ(M) — HZ(M/zM) — (0 :pzar) ©) — 0,
it is concluded that H2(M)/xHZ(M) is a-cofinite. By the exact sequence
FQ(M/iUM) — (O "HL(M) CC) — 0,

one deduces that (0 :g1(5s) ) is a finitely generated R-module. Therefore,
the exact sequences

0— (0 () @) — Hy (M) — xHy (M) — 0,
and
0 — xHy(M) — H (M) — Hy(M)/xH, (M) — 0,
show that H)(M)/xH}(M) is a-cofinite. Therefore, the exact sequence
0 — Hy(M)/xHy(M) — Hy(M/zM) — (0 :2ar) ©) — 0,

implies that (0 :2(a) ) is a-cofinite. Since € a and both of the R-modules
(0 g2y @), H(M)/xHZ(M) are a-cofinite, so by Lemma 2.6, the R-module
HZ(M) is a-cofinite.
Now, using induction on i, we prove that the R-modules
Ta(M), Hy(M), Hi(M), HJ(M), ..., Hy(M),

are a-cofinite for all integers ¢ > 3. For ¢ = 3, there is nothing to prove.
Suppose, inductively, that ¢ > 3 and the result has been proved for ¢ — 1.
Then, by inductive hypothesis, the R-modules

La(M), Hy(M), H{ (M), HQ(M), ..., H'(M),
are a-cofinite. Therefore, by Lemma 2.1, the R-modules

Homp(R/ a, Hy(M)), Extp(R/ a, Hy(M)),



268 PIRMOHAMMADI

are finitely generated. Since dim H!(M) < 1, it follows from Lemma 2.2, that
the R-module H!(M) is a-cofinite. This completes the inductive hypothesis.
So that, a € Z(R). O

Now we are ready to state and prove our main result.

Theorem 2.8. Let R be a Noetherian ring and a be an ideal of R. Then the
following statements hold:
(1) a € Z(R).
(2) HYX(M) and H2(M) are a-cofinite for every finitely generated R-module
M.

Proof. (1)==-(2) The assertion is obvious.

(2)=(1) We claim that dim H.(R) < 1, for all integers i > 2. As-
sume that this is not the case. Then there is an integer j > 2 such that
dim H!(R) > 2. Thus, there exists a maximal prime ideal n of R such that
dimHﬁRn(Rn) — dim (HI(R))y > 2. From the hypothesis (ii), it is con-
cluded that the Ry-modules Hyp, (N) and H}p (N) are a Ry-cofinite, for
every finitely generated Ry-module N. Hence, by Lemma 2.7, we have
dim (Hz(R))n = dim H;, (R,) < 1, which is a contradiction. Therefore,
dim H!(R) < 1, for all integers i > 2. Moreover, by the hypothesis, the
R-modules T'y(R) and H}(R) are a-cofinite. Therefore, applying the method
used in the proof of Lemma 2.7, one sees that the R-modules H!(R) are a-
cofinite for all integers i € Ny. Consequently, H.(R) € €'(R,a).y, for all
integers ¢ > 2. Therefore, a € #(R), by Lemma 2.4, O
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