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ON THE COFINITENESS OF LOCAL COHOMOLOGY MODULES

G. Pirmohammadi

Abstract. Let a be an ideal of a Noetherian ring R such that the R-modules H1
a(M)

and H3
a(M) are a-cofinite, for all finitely generated R-modules M . In this paper, it is

shown that the R-modules Hi
a(M) are a-cofinite, for all finitely generated R-modules

M and all integers i ∈ N0.

1. Introduction
Throughout this paper, let R denote a commutative Noetherian ring

(with identity) and let a be an ideal of R. In this paper, we will denote
SuppR/ a = {p ∈ SpecR : p ⊇ a} by V (a). In addition, the symbol N
(respectively N0) will denote the set of positive (respectively non-negative)
integers. The ith local cohomology module of an R-module M with support
in V (a) is defined as:

H i
a(M) = lim−→

n∈N
ExtiR(R/ an,M).

For further information on the concept of local cohomology, the reader may
consult [7] and [12].

It is a well known result that if (R,m, k) is a Noetherian local ring, then for
each finitely generated R-module M and each i ∈ N0, the R-module H i

m(M) is
Artinian, hence the R-module HomR(k,H

i
m(M)) is finitely generated. Taking

this fact, Grothendieck in his algebraic geometry seminar of 1962, (see [11,
Exposé XIII, Conjecture 1.1]) conjectured the following:

Conjecture: For each ideal a of a Noetherian ring R and each finitely
generated R-module M , the R-modules HomR(R/ a, H i

a(M)) are finitely gen-
erated for all i ∈ N0.

Two years later, Hartshorne provided a counterexample in [13, Section 3],
to show that this question does not have an affirmative answer in general.
Furthermore, in the same paper he defined an R-module M to be a-cofinite if
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the support of M is contained in V (a) and ExtiR(R/ a,M) is finitely generated
for each i ∈ N0 and posed the following question:

Question 1: For which Noetherian rings R and ideals a of R, are the
modules H i

a(M) a-cofinite, for all finitely generated R-modules M and all
i ∈ N0?

In the sequel, the notation C (R, a)cof denotes the category of all a-cofinite
R-modules and C 1(R, a)cof denotes the category of all R-modules
M ∈ C (R, a)cof such that dimM ≤ 1. Also, throughout this paper, let
I (R) be the class of all ideals a of R such that H i

a(U) ∈ C (R, a)cof , for all
finitely generated R-modules U and all i ∈ N0.

Concerning Question 1, there are several remarkable results in the liter-
ature; see e.g. [2, 5, 8, 9, 10, 14, 15, 16, 18, 19]. In fact, in these articles
many of authors have found several classes of ideals of a Noetherian ring R
satisfying the condition of Question 1. In [4], Bahmanpour solved Question
1, by obtaining an explicit description of the set I (R) for any Noetherian
ring R. More precisely, in [4, Theorem 4.10], he proved that for each ideal
a of a Noetherian ring R, a ∈ I (R) if and only if H i

a(R) ∈ C 1(R, a)cof for
each integer i ≥ 2. Moreover, in the same paper he proved that in the case
that (R,m) is a local ring, the condition a ∈ I (R) is equivalent to the con-
dition that for each minimal prime ideal P of R̂ (the m-adic completion of
R), dim R̂/(a R̂ +P) ≤ 1 or cd(a R̂, R̂/P) ≤ 1.

In this paper, we take a step in this direction. Precisely, we show that for a
given ideal a of a Noetherian ring R, a ∈ I (R) if and only if the R-modules
H1

a(M) and H3
a(M) are a-cofinite for all finitely generated R-modules M .

Throughout this paper, for each ideal b of R and each R-module M , Γb(M)
denotes the submodule ∪n∈N(0 :M bn) of M . We refer the reader to [7, 17]
for basic results, notations, and terminology not given in this paper.

2. Main results
The main purpose of this section is to prove Theorem 2.8, which asserts

that for a given ideal a of a Noetherian ring R, if the R-modules H1
a(M)

and H3
a(M) are a-cofinite, for all finitely generated R-modules M , then the

R-modules H i
a(M) are a-cofinite, for all integers i and all finitely generated

R-modules M .
Let us start this section with some useful lemmas.

Lemma 2.1. (See [1, Lemma 2.3]) Let a be an ideal of a Noetherian ring R
and M be a Serre subcategory of the category of R-modules. Let n ∈ N0 and
M be an R-module such that ExtjR(R/ a, H i

a(M)) ∈ M , for all 0 ≤ i < n and
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all j ∈ N0. If the R-modules ExtnR(R/ a,M) and Extn+1
R (R/ a,M) are in M ,

then the R-modules HomR(R/ a, Hn
a (M)) and Ext1R(R/ a, Hn

a (M)) are in M .

Lemma 2.2. (See [6, Proposition 2.6]) Let a be an ideal of a Noetherian ring
R and M be an R-module such that dimM ≤ 1 and SuppM ⊆ V (a). Then
the following statements are equivalent:

(1) M is a-cofinite.
(2) The R-modules HomR(R/ a,M) and Ext1R(R/ a,M) are finitely

generated.

Lemma 2.3. (See [6, Therem 2.7]) Let a be an ideal of a Noetherian ring R.
Then C 1(R, a)cof is an Abelian category.

Lemma 2.4. (See [3, Lemma 2.1]) For an ideal a of a Noetherian ring R,
the following statements are equivalent:

(1) a ∈ I (R).
(2) H i

a(R) ∈ C 1(R, a)cof , for all integers i ≥ 2.
(3) For each finitely generated R-module M , H i

a(M) ∈ C 1(R, a)cof , for all
integers i ≥ 2.

Lemma 2.5. (See [10, Proposition 2]) Let a, b be two ideals of a Noetherian
ring R and M be an R-module with bM = 0 and SuppM ⊆ V (a). Then M
is a-cofinite (as an R-module) if and only if M is (a+ b)/ b-cofinite (as an
R/ b-module).

Lemma 2.6. (See [18, Corollary 3.4]) Let a be an ideal of a Noetherian ring
R and x ∈ a. Let M be an R-module with SuppM ⊆ V (a) such that the
R-module (0 :M x) and M/xM are a-cofinite. Then M is a-cofinite.

The following lemma plays a key role in the proof of Theorem 2.8.

Lemma 2.7. Let (R,m) be a Noetherian local ring and a be an ideal of R.
Then the following statements hold:

(1) a ∈ I (R).
(2) The R-modules H1

a(M), H3
a(R) are a-cofinite, for all finitely generated

R-modules M .
(3) For each finitely generated R-module M , H i

a(M) ∈ C 1(R, a)cof , for all
integers i ≥ 2.

Proof. (1)=⇒(2) The assertion is trivial.
(1)⇐⇒(3) The assertion holds by Lemma 2.4.
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(2)=⇒(1) We argue by induction on d = dimR. For d = 0, the as-
sertion follows from Grothendieck’s Vanishing Theorem (see [7, Theorem
6.1.2]). Suppose, inductively, that d > 0 and the result has been proved
for smaller values of d. Assume that M is a finitely generated R-module.
Since Γa(R)M ⊆ Γa(M), so M/Γa(M) has an R/Γa(R)-module structure by
means of the natural map π : R −→ R/Γa(R). For each i ∈ N, we have

H i
a(M) ≃ H i

a(M/Γa(M)) ≃ H i
a+Γa(R)/Γa(R)(M/Γa(M)).

In addition, by Independence Theorem (see [7, Theorem 4.2.1]) and Lemma
2.5, one sees that ⊕i≥2H

i
a(M) ∈ C (R, a)cof if and only if

⊕i≥2H
i
a+Γa(R)/Γa(R)(M/Γa(M)) ∈ C (R/Γa(R), a+Γa(R)/Γa(R))cof .

Also, from the hypothesis (ii), Independence Theorem and Lemma 2.5, we
can deduce that the R/Γa(R)-modules

H1
a+Γa(R)/Γa(R)(N), H3

a+Γa(R)/Γa(R)(N),

are a+Γa(R)/Γa(R)-cofinite, for all finitely generated R/Γa(R)-modules N .
So, by replacing R, a and M with R/Γa(R), a+Γa(R)/Γa(R) and M/Γa(M),
we can make the additional assumption that Γa(R) = 0 and Γa(M) = 0.
Then, by Prime Avoidance Theorem, we have

a ̸⊆

 ∪
p∈AssR R

p

∪ ∪
q∈AssR M

q

 .

Thus, we can find an element x ∈ a with x ̸∈
∪

p∈AssR R p and x ̸∈
∪

q∈AssR M q.
Then, it is clear that dimR/xR = d − 1. Also, from the hypothesis (ii),
Independence Theorem and Lemma 2.5, it follows that the R/xR-modules
H1

a+xR/xR(L), H3
a+xR/xR(L) are a+xR/xR-cofinite, for every finitely gener-

ated R/xR-module L. So, by inductive hypothesis we have
a+xR/xR ∈ I (R/xR).

Therefore, Lemma 2.3 implies that
H i

a+xR/xR(M/xM) ∈ C 1(R/xR, a+xR/xR)cof ,
for all integers i ≥ 2. Hence, by Independence Theorem and Lemma 2.5, we
can deduce that H i

a(M/xM) ∈ C 1(R, a)cof , for all integers i ≥ 2. As x ∈ a,
for each i ∈ N0, we see that dimH i

a(M) ≤ 1 if and only if dim (0 :Hi
a(M) x) ≤ 1.

Moreover, the exact sequence
0 −→ M

x−→ M −→ M/xM −→ 0
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induces a long exact sequence

· · · −→ Hj
a(M)

x−→ Hj
a(M) −→ Hj

a(M/xM)

−→ Hj+1
a (M)

x−→ Hj+1
a (M) −→ · · · .

Consequently, for all integers j ≥ 0, there is a short exact sequence,
0 −→ Hj

a(M)/xHj
a(M) −→ Hj

a(M/xM) −→ (0 :Hj+1
a (M) x) −→ 0,

which implies that dim (0 :Hi
a(M) x) ≤ 1, for all integers i ≥ 3. Therefore,

dimH i
a(M) ≤ 1, for all integers i ≥ 3. Hence, by Lemma 2.3, the R-module

(0 :H3
a(M) x) is a-cofinite since H3

a(M) ∈ C 1(R, a)cof . Therefore, by the exact
sequence

0 −→ H2
a(M)/xH2

a(M) −→ H2
a(M/xM) −→ (0 :H3

a(M) x) −→ 0,

it is concluded that H2
a(M)/xH2

a(M) is a-cofinite. By the exact sequence
Γa(M/xM) −→ (0 :H1

a(M) x) −→ 0,

one deduces that (0 :H1
a(M) x) is a finitely generated R-module. Therefore,

the exact sequences
0 −→ (0 :H1

a(M) x) −→ H1
a(M) −→ xH1

a(M) −→ 0,

and
0 −→ xH1

a(M) −→ H1
a(M) −→ H1

a(M)/xH1
a(M) −→ 0,

show that H1
a(M)/xH1

a(M) is a-cofinite. Therefore, the exact sequence
0 −→ H1

a(M)/xH1
a(M) −→ H1

a(M/xM) −→ (0 :H2
a(M) x) −→ 0,

implies that (0 :H2
a(M) x) is a-cofinite. Since x ∈ a and both of the R-modules

(0 :H2
a(M) x), H2

a(M)/xH2
a(M) are a-cofinite, so by Lemma 2.6, the R-module

H2
a(M) is a-cofinite.
Now, using induction on i, we prove that the R-modules

Γa(M), H1
a(M), H2

a(M), H3
a(M), . . . , H i

a(M),

are a-cofinite for all integers i ≥ 3. For i = 3, there is nothing to prove.
Suppose, inductively, that i > 3 and the result has been proved for i − 1.
Then, by inductive hypothesis, the R-modules

Γa(M), H1
a(M), H2

a(M), H3
a(M), . . . , H i−1

a (M),

are a-cofinite. Therefore, by Lemma 2.1, the R-modules
HomR(R/ a, H i

a(M)), Ext1R(R/ a, H i
a(M)),
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are finitely generated. Since dimH i
a(M) ≤ 1, it follows from Lemma 2.2, that

the R-module H i
a(M) is a-cofinite. This completes the inductive hypothesis.

So that, a ∈ I (R). □
Now we are ready to state and prove our main result.

Theorem 2.8. Let R be a Noetherian ring and a be an ideal of R. Then the
following statements hold:

(1) a ∈ I (R).
(2) H1

a(M) and H3
a(M) are a-cofinite for every finitely generated R-module

M .

Proof. (1)=⇒(2) The assertion is obvious.
(2)=⇒(1) We claim that dimH i

a(R) ≤ 1, for all integers i ≥ 2. As-
sume that this is not the case. Then there is an integer j ≥ 2 such that
dimH i

a(R) ≥ 2. Thus, there exists a maximal prime ideal n of R such that
dimHj

aRn
(Rn) = dim (Hj

a(R))n ≥ 2. From the hypothesis (ii), it is con-
cluded that the Rn-modules H1

aRn
(N) and H3

aRn
(N) are aRn-cofinite, for

every finitely generated Rn-module N . Hence, by Lemma 2.7, we have
dim (Hj

a(R))n = dimHj
aRn

(Rn) ≤ 1, which is a contradiction. Therefore,
dimH i

a(R) ≤ 1, for all integers i ≥ 2. Moreover, by the hypothesis, the
R-modules Γa(R) and H1

a(R) are a-cofinite. Therefore, applying the method
used in the proof of Lemma 2.7, one sees that the R-modules H i

a(R) are a-
cofinite for all integers i ∈ N0. Consequently, H i

a(R) ∈ C 1(R, a)cof , for all
integers i ≥ 2. Therefore, a ∈ I (R), by Lemma 2.4. □
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موضعی کوهمولوژی مدول های بودن هم متناهی

پیرمحمدی غلامرضا

ایران تهران، نور، پیام دانشگاه

،M متناهی مولد R-مدول هر برای به طوری که باشد R نوتری حلقه از ایده آلی a کنیم فرض
هر برای که است شده ثابت مقاله این در باشند. a-هم متناهی ،H٣

a (M) و H١
a (M) R-مدول های

است. a-هم متناهی ،H i
a(M) ،i ∈ N٠ به ازای هر و M مولد متناهی  R-مدول

کرول. بعد نوتری، حلقه موضعی، کوهمولوژی هم متناهی، مدول کلیدی: کلمات
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