RAMANUJAN POLAR GRAPHS

Document Type : Original Manuscript

Author

Dipartimento di Tecnica e Gestione dei Sistemi Industriali, Università degli Studi di Padova, Stradella S. Nicola 3, 36100, Vicenza, Italy.

10.22044/jas.2024.14231.1809

Abstract

Recently, a construction of minimal codes arising from a family of almost Ramanujan graphs was shown. Ramanujan graphs are examples of expander graphs that minimize the second-largest eigenvalue of their adjacency matrix. We call such graphs Ramanujan, since all known non-trivial constructions imply the Ramanujan conjecture on arithmetical functions. In this paper, we prove that some families of tangent graphs of finite classical polar spaces satisfy Ramanujan's condition. If the polarity is unitary, or it is orthogonal and the quadric is over the binary field, the tangent graphs are strongly regular, and we know their spectrum. By direct computation, it is possible to show which families of tangent graphs are Ramanujan.

Keywords


1. N. Alon, A. Bishnoi, S. Das and A. Neri, Strong blocking sets and minimal codes from expander graphs, Trans. Amer. Math. Soc., 377(8) (2024), 5389–5410.
 
2. G. Brinkmann, K. Coolsaet, J. Goedgebeur and H. Mélot, House of Graphs: A database of interesting graphs, Discrete Appl. Math., 161(1-2) (2011), 311–314.
 
3. A. E. Brouwer and H. Van Maldeghem, Strongly Regular Graphs, Encyclopedia of Mathematics and its Applications, Cambridge University Press, 2022.
 
4. D. Crnković, S. Rukavina and A. Švob, New strongly regular graphs from orthogonal groups O+(6, 2) and O-(6, 2), Discrete Math., 241(10) (2018), 2723–2728.
 
5. S. Hoory, S. Linial and A. Wigderson, Expander graphs and their applications, Bull. Amer. Math. Soc., 43(4) (2006), 439–561.
 
6. F. Ihringer, F. Pavese and V. Smaldore, Graphs cospectral with NU(n + 1, q2), n ̸= 3, Discrete Math., 344(11) (2021), Article ID: 112560.
 
7. A. Lubotzky, R. Phillips and P. Sarnak, Ramanujan graphs, Combinatorica, 8(3) (1988), 261–277.
 
8. M. Morgenstern, Existence and explicit constructions of q + 1 regular Ramanujan graphs for every prime power q, J. Combin. Theory Ser. B, 62(1) (1994), 44–62.
 
9. A. Nilli, On the second eigenvalue of a graph, Discrete Math., 91(2) (1991), 207–210.
 
10. S. Ramanujan, On certain arithmetical functions, Trans. Cambridge Philos. Soc., XXII(9) (1916), 159–184.
 
11. F. Romaniello and V. Smaldore, On a graph isomorphic to NO+(6, 2), Bull. Inst. Comb. Appl., 100 (2024), 151–161. 
 
 12. F. Romaniello and V. Smaldore, The automorphism group of NU(3, q2), J. Geom., 113(3) (2022), 42.
 
13. M. Sipser and D. A. Spielman, Expander codes, IEEE Trans. Infor. Theory, 42(6) (1996), 1710–1722.