

$K - bi - g$ -FRAMES IN HILBERT SPACES

M. Rossafi* and A. Karara

ABSTRACT. This paper will introduce the new concept of K -bi- g -frames for Hilbert spaces. Then we examine some characterizations with the help of a biframe operator. Finally, we investigate several results about the stability of K -bi- g -frames produced using frame theory methods.

1. INTRODUCTION

Duffin and Schaffer introduced the notion of frames in Hilbert spaces [8] in 1952 to research certain difficult nonharmonic Fourier series problems. Following the fundamental paper [6] by Daubechies, Grossman, and Meyer, frame theory started to become popular, especially in the more specific context of Gabor frames and wavelet frames [11]. A sequence $\{\Phi_i\}_{i \in I}$ in \mathcal{H} is called a frame for \mathcal{H} if there exist two constants $0 < A \leq B < \infty$ such that

$$A \|x\|^2 \leq \sum_{i \in I} |\langle x, \Phi_i \rangle|^2 \leq B \|x\|^2, \text{ for all } x \in \mathcal{H}.$$

For more detailed information on frame theory, readers are recommended to consult: [2, 4, 5, 13, 14, 16, 21, 20, 19].

The concept of K -frames was introduced by Laura Găvruta [12] and serves as a tool for investigating atomic systems for a bounded linear operator K in a separable Hilbert space. A sequence $\{\Phi_i\}_{i \in I}$ in \mathcal{H} is called a K -frame for \mathcal{H} if there exist two constants $0 < A \leq B < \infty$ such that

$$A \|K^*x\|^2 \leq \sum_{i \in I} |\langle x, \Phi_i \rangle|^2 \leq B \|x\|^2, \text{ for all } x \in \mathcal{H}.$$

The notion of K -frames generalizes ordinary frames in that the lower frame bound applies only to elements within the range of K . After that, Xiao et al. [23] introduced the concept of a K - g -frame, which is a more general framework than both g -frames and K -frames in Hilbert spaces.

The idea of pair frames, which refers to a pair of sequences in a Hilbert space, was first presented in [9] by Fereydooni and Safapour. Parizi, Aljani,

MSC(2020): Primary: 42C15; Secondary: 46C05, 47B90.

Keywords: Frame; K -Frame; Biframe; K -bi- g -Frames; Hilbert spaces.

Received: 6 May 2024, Accepted: 8 September 2024.

*Corresponding author.

and Dehghan [10] studied biframe, which is a generalization of a controlled frame in Hilbert space. The concept of a frame is defined by a single sequence, but to define a biframe we will need two sequences. The concept of a biframe is a generalization of the controlled frames and a special case of pair frames.

This paper will introduce the concept of K -bi- g -frames in Hilbert space and present some examples of this type of frame. Moreover, we investigate a characterization of K -bi- g -frames by using the biframe operator. Finally, in our exploration of biframes, we investigate some results about the stability of K -bi- g -frames produced via the use of frame theory.

2. NOTATION AND PRELIMINARIES

Throughout this paper, \mathcal{H} represents a separable Hilbert space. The notation $\mathcal{B}(\mathcal{H}, \mathcal{K})$ denotes the collection of all bounded linear operators from \mathcal{H} to the Hilbert space \mathcal{K} . When $\mathcal{H} = \mathcal{K}$, this set is denoted simply as $\mathcal{B}(\mathcal{H})$. We will use $\mathcal{N}(\mathcal{T})$ and $\mathcal{R}(\mathcal{T})$ to denote the null and range space of an operator $\mathcal{T} \in \mathcal{B}(\mathcal{H})$. Also, $\text{GL}(\mathcal{H})$ is the collection of all invertible, bounded linear operators acting on \mathcal{H} . Let $\{\mathcal{K}_i\}_{i \in I}$ be a sequence of closed subspaces of \mathcal{H} , where I is a finite or countable index set. $\ell^2(\{\mathcal{K}_i\}_{i \in I})$ is defined by

$$\ell^2(\{\mathcal{K}_i\}_{i \in I}) = \left\{ \{x_i\}_{i \in I} : x_i \in \mathcal{K}_i, \quad i \in I, \quad \sum_{i \in I} \|x_i\|^2 < +\infty \right\},$$

with the inner product

$$\langle \{x_i\}_{i \in I}, \{y_i\}_{i \in I} \rangle = \sum_{i \in I} \langle x_i, y_i \rangle.$$

Certainly, let's begin with some preliminaries. Before diving into the details, let's briefly recall the definition of a biframe:

Definition 2.1. [10] A pair $(\Phi, \Psi) = (\{\Phi_i\}_{i \in I}, \{\Psi_i\}_{i \in I})$ in \mathcal{H} is called a biframe for \mathcal{H} if there exist two constants $0 < A \leq B < \infty$ such that

$$A \|x\|^2 \leq \sum_{i \in I} \langle x, \Phi_i \rangle \langle \Psi_i, x \rangle \leq B \|x\|^2, \text{ for all } x \in \mathcal{H}.$$

Theorem 2.2. [1] $\mathcal{T} \in \mathcal{B}(\mathcal{H})$ is an injective and closed range operator if and only if there exists a constant $c > 0$ such that $c\|x\|^2 \leq \|\mathcal{T}x\|^2$, for all $x \in \mathcal{H}$.

Definition 2.3. [15] Let \mathcal{H} be a Hilbert space, and suppose that $\mathcal{T} \in \mathcal{B}(\mathcal{H})$ has a closed range. Then there exists an operator $\mathcal{T}^\dagger \in \mathcal{B}(\mathcal{H})$ for which

$$N(\mathcal{T}^\dagger) = \mathcal{R}(\mathcal{T})^\perp, \quad R(\mathcal{T}^\dagger) = N(\mathcal{T})^\perp, \quad \mathcal{T}\mathcal{T}^\dagger x = x, \quad x \in \mathcal{R}(\mathcal{T}).$$

We call the operator \mathcal{T}^\dagger the pseudo-inverse of \mathcal{T} . This operator is uniquely determined by these properties. In fact, if \mathcal{T} is invertible, then we have $\mathcal{T}^{-1} = \mathcal{T}^\dagger$.

Theorem 2.4. [7] *Let \mathcal{H} be a Hilbert space and $\mathcal{T}_1, \mathcal{T}_2 \in \mathcal{B}(\mathcal{H})$. The following statements are equivalent:*

- (1) $\mathcal{R}(\mathcal{T}_1) \subset \mathcal{R}(\mathcal{T}_2)$;
- (2) $\mathcal{T}_1 \mathcal{T}_1^* \leq \lambda^2 \mathcal{T}_2 \mathcal{T}_2^*$ for some $\lambda \geq 0$;
- (3) $\mathcal{T}_1 = \mathcal{T}_2 U$ for some $U \in \mathcal{B}(\mathcal{H})$.

Lemma 2.5. [3] *Let $\mathcal{T} : \mathcal{H} \rightarrow \mathcal{H}$ be a linear operator, and assume that there exist constants $\alpha, \beta \in [0; 1)$ such that $\|\mathcal{T}x - x\| \leq \alpha\|x\| + \beta\|\mathcal{T}x\|$, for all $x \in \mathcal{H}$. Then $\mathcal{T} \in \mathcal{B}(\mathcal{H})$, and*

$$\frac{1-\alpha}{1+\beta}\|x\| \leq \|\mathcal{T}x\| \leq \frac{1+\alpha}{1-\beta}\|x\|, \quad \frac{1-\beta}{1+\alpha}\|x\| \leq \|\mathcal{T}^{-1}x\| \leq \frac{1+\beta}{1-\alpha}\|x\|, \quad \forall x \in \mathcal{H}.$$

3. K-BI-g-FRAMES IN HILBERT SPACES

In this section, we introduce the concept of a K -bi- g -frame and subsequently establish some of its properties. However, before proceeding, we first define the notions of a g -frame and bi- g -frame in Hilbert spaces. Throughout the remainder of this part (sections 3, 4 and 5), we denote:

$$(\Phi, \Psi)_K = \left(\{\Phi_i : \Phi_i \in \mathcal{B}(\mathcal{H}, \mathcal{K}_i)\}_{i \in I}, \{\Psi_i : \Psi_i \in \mathcal{B}(\mathcal{H}, \mathcal{K}_i)\}_{i \in I} \right)$$

Definition 3.1. [22] A sequence $\{\Phi_i \in \mathcal{B}(\mathcal{H}, \mathcal{K}_i)\}_{i \in I}$ is called a generalized frame, or simply a g -frame, for \mathcal{H} with respect to $\{\mathcal{K}_i\}_{i \in I}$ if there are two positive constants A and B such that

$$A\|x\|^2 \leq \sum_{j \in I} \|\Phi_j x\|^2 \leq B\|x\|^2, \quad \forall x \in \mathcal{H}.$$

The constants A and B are called the lower and upper g -frame bounds, respectively.

Definition 3.2. [18] A pair $(\Phi, \Psi)_K$ of sequences is called a bi- g -frame for \mathcal{H} with respect to $\{\mathcal{K}_i\}_{i \in I}$, if there exist two constants $0 < A \leq B < \infty$ such that

$$A\|x\|^2 \leq \sum_{i \in I} \langle \Phi_i x, \Psi_i x \rangle \leq B\|x\|^2, \quad \text{for all } x \in \mathcal{H}.$$

Definition 3.3. Let $K \in \mathcal{B}(\mathcal{H})$. A pair $(\Phi, \Psi)_K$ of sequences is called a K -bi- g -frame for \mathcal{H} with respect to $\{\mathcal{K}_i\}_{i \in I}$, if there exist two constants $0 < A \leq B < \infty$ such that

$$A \|K^*x\|^2 \leq \sum_{i \in I} \langle \Phi_i x, \Psi_i x \rangle \leq B \|x\|^2, \text{ for all } x \in \mathcal{H}.$$

The numbers A and B are called respectively the lower and upper bounds for the K -bi- g -frames $(\Phi, \Psi)_K$ respectively. If K is equal to $\mathcal{I}_{\mathcal{H}}$, the identity operator on \mathcal{H} , then K -bi- g -frames is bi- g -frames.

Let $(\Phi, \Psi) = (\{\Phi_i\}_{i \in I}, \{\Psi_i\}_{i \in I})$ be a bi- g -frame for \mathcal{H} . We define the bi- g -frame operator $S_{\Phi, \Psi}$ as follows:

$$S_{\Phi, \Psi} : \mathcal{H} \longrightarrow \mathcal{H}, \quad S_{\Phi, \Psi}(x) := \sum_{i \in I} \Psi_i^* \Phi_i x.$$

Definition 3.4. [17] Let $C, C' \in GL(\mathcal{H})$. The family

$$\Phi = \{\Phi_i \in \mathcal{B}(\mathcal{H}, \mathcal{K}_i) : i \in I\}$$

will be called a (C, C') -controlled g -frame for \mathcal{H} , if Φ is a g -Bessel sequence and there exists constants $A > 0$ and $B < \infty$ such that

$$A \|f\|^2 \leq \sum_{i \in I} \langle \Phi_i C f, \Phi_i C' f \rangle \leq B \|f\|^2, \quad \forall f \in \mathcal{H}.$$

A and B will be called controlled frame bounds. If $C' = I$, we call $\Phi = \{\Phi_i\}$ a C -controlled g -frame for \mathcal{H} with bounds A and B .

Remark 3.5. According to Definition 3.3, the following statements are true for a sequence $\Phi = \{\Phi_i : \Phi_i \in \mathcal{B}(\mathcal{H}, \mathcal{K}_i)\}_{i \in I}$ for \mathcal{H} with respect to $\{\mathcal{K}_i\}_{i \in I}$:

- (1) If (Φ, Φ) is a K -bi- g -frame for \mathcal{H} , then Φ is a K - g -frame for \mathcal{H} .
- (2) If $(\Phi, C\Phi)$ is a K -bi- g -frame for some $C \in GL(\mathcal{H})$, then Φ is a C -controlled K - g -frame for \mathcal{H} .
- (3) If $(C_1\Phi, C_2\Phi)$ is a K -bi- g -frame for some C_1 and C_2 in $GL(\mathcal{H})$, then Φ is a (C_1, C_2) -controlled K - g -frame for \mathcal{H} .

Example 3.6. Let $\mathcal{H} = \mathbb{C}^4$ and $\{e_1, e_2, e_3, e_4\}$ be an orthonormal basis for \mathcal{H} and $\mathcal{K}_1 = \mathcal{K}_2 = \overline{\text{span}}\{e_1\}, \mathcal{K}_3 = \overline{\text{span}}\{e_3\}, \mathcal{K}_4 = \overline{\text{span}}\{e_4\}$. Define

$$K : \mathcal{H} \rightarrow \mathcal{H} \quad \text{by} \quad Kx = \langle x, e_1 \rangle e_2.$$

We consider two sequences, $\Phi = \{\Phi_i\}_{i=1}^4$ and $\Psi = \{\Psi_i\}_{i=1}^4$ defined as follows:

$$\begin{aligned}\Phi_1 : \mathcal{H} &\rightarrow \mathcal{K}_1, \Phi_1 x = \langle x, e_1 \rangle e_1, & x \in \mathcal{H}, \\ \Phi_2 : \mathcal{H} &\rightarrow \mathcal{K}_2, \Phi_2 x = \langle x, e_1 \rangle e_1, & x \in \mathcal{H}, \\ \Phi_3 : \mathcal{H} &\rightarrow \mathcal{K}_3, \Phi_3 x = 3 \langle x, e_2 \rangle e_3, & x \in \mathcal{H}, \\ \Phi_4 : \mathcal{H} &\rightarrow \mathcal{K}_4, \Phi_4 x = 4 \langle x, e_3 \rangle e_4, & x \in \mathcal{H}.\end{aligned}$$

And

$$\begin{aligned}\Psi_1 : \mathcal{H} &\rightarrow \mathcal{K}_1, \Psi_1 x = \langle x, e_1 \rangle e_1, & x \in \mathcal{H}, \\ \Psi_2 : \mathcal{H} &\rightarrow \mathcal{K}_2, \Psi_2 x = \langle x, e_1 \rangle e_1, & x \in \mathcal{H}, \\ \Psi_3 : \mathcal{H} &\rightarrow \mathcal{K}_3, \Psi_3 x = \frac{1}{3} \langle x, e_2 \rangle e_3, & x \in \mathcal{H}, \\ \Psi_4 : \mathcal{H} &\rightarrow \mathcal{K}_4, \Psi_4 x = \frac{1}{4} \langle x, e_3 \rangle e_4, & x \in \mathcal{H}.\end{aligned}$$

Next, we establish that $K^*x = \langle x, e_2 \rangle e_1, x \in \mathcal{H}$. Indeed, for any $x, y \in \mathcal{H}$, we obtain:

$$\begin{aligned}\langle K^*x, y \rangle &= \langle x, Ky \rangle \\ &= \langle x, \langle y, e_1 \rangle e_2 \rangle \\ &= \langle x, e_2 \rangle \overline{\langle y, e_1 \rangle} \\ &= \langle x, e_2 \rangle \langle e_1, y \rangle \\ &= \langle \langle x, e_2 \rangle e_1, y \rangle\end{aligned}$$

For $x \in \mathcal{H}$, we have $\sum_{i=1}^4 \langle \Phi_i x, \Psi_i x \rangle = 2|\langle x, e_1 \rangle|^2 + |\langle x, e_2 \rangle|^2 + |\langle x, e_3 \rangle|^2$. Hence, for every $x \in \mathcal{H}$, we have

$$\begin{aligned}\|K^*x\|^2 &= \|\langle x, e_2 \rangle e_1\|^2 \\ &= |\langle x, e_2 \rangle|^2 \\ &\leq 2|\langle x, e_1 \rangle|^2 + |\langle x, e_2 \rangle|^2 + |\langle x, e_3 \rangle|^2 \\ &= \sum_{i=1}^4 \langle \Phi_i x, \Psi_i x \rangle \\ &\leq 2\|x\|^2.\end{aligned}$$

Therefore, $(\Phi, \Psi)_K$ is a K -bi- g -frame with bounds 1 and 2.

Definition 3.7. Let $K \in \mathcal{B}(\mathcal{H})$. A pair $(\Phi, \Psi)_K$ of sequences in \mathcal{H} is said to be a δ - tight K -bi- g -frame with bound A if

$$\delta \|K^*x\|^2 = \sum_{i \in I} \langle \Phi_i x, \Psi_i x \rangle, \text{ for all } x \in \mathcal{H}.$$

When $\delta = 1$, it is called a Parseval K -bi- g -frame.

Example 3.8. Let $\mathcal{H} = \mathbb{C}^4$ and $\{e_1, e_2, e_3, e_4\}$ be an orthonormal basis for \mathcal{H} , and $\mathcal{K}_1 = \overline{\text{span}}\{e_1\}, \mathcal{K}_2 = \overline{\text{span}}\{e_2\}, \mathcal{K}_3 = \overline{\text{span}}\{e_3\}, \mathcal{K}_4 = \overline{\text{span}}\{e_4\}$. Define

$$K : \mathcal{H} \rightarrow \mathcal{H} \quad \text{by} \quad Kx = \langle x, e_1 \rangle e_1 + \langle x, e_2 \rangle e_2 + \langle x, e_3 \rangle e_3 + \langle x, e_4 \rangle e_4.$$

We consider two sequences, $\Phi = \{\Phi_i\}_{i=1}^4$ and $\Psi = \{\Psi_i\}_{i=1}^4$ defined as follows:

$$\begin{aligned} \Phi_1 : \mathcal{H} &\rightarrow \mathcal{K}_1, \Phi_1 x = \langle x, e_1 \rangle e_1, & x \in \mathcal{H}, \\ \Phi_2 : \mathcal{H} &\rightarrow \mathcal{K}_2, \Phi_2 x = 2 \langle x, e_2 \rangle e_2, & x \in \mathcal{H}, \\ \Phi_3 : \mathcal{H} &\rightarrow \mathcal{K}_3, \Phi_3 x = 3 \langle x, e_3 \rangle e_3, & x \in \mathcal{H}, \\ \Phi_4 : \mathcal{H} &\rightarrow \mathcal{K}_4, \Phi_4 x = 4 \langle x, e_4 \rangle e_4, & x \in \mathcal{H}. \end{aligned}$$

And

$$\begin{aligned} \Psi_1 : \mathcal{H} &\rightarrow \mathcal{K}_1, \Psi_1 x = \langle x, e_1 \rangle e_1, & x \in \mathcal{H}, \\ \Psi_2 : \mathcal{H} &\rightarrow \mathcal{K}_2, \Psi_2 x = \frac{1}{2} \langle x, e_2 \rangle e_2, & x \in \mathcal{H}, \\ \Psi_3 : \mathcal{H} &\rightarrow \mathcal{K}_3, \Psi_3 x = \frac{1}{3} \langle x, e_3 \rangle e_3, & x \in \mathcal{H}, \\ \Psi_4 : \mathcal{H} &\rightarrow \mathcal{K}_4, \Psi_4 x = \frac{1}{4} \langle x, e_4 \rangle e_4, & x \in \mathcal{H}. \end{aligned}$$

For $x \in \mathcal{H}$ we have,

$$K^*x = \langle x, e_1 \rangle e_1 + \langle x, e_2 \rangle e_2 + \langle x, e_3 \rangle e_3 + \langle x, e_4 \rangle e_4, \quad x \in \mathcal{H}.$$

Indeed, for any $x, y \in \mathcal{H}$, we obtain:

$$\begin{aligned} \langle K^*x, y \rangle &= \langle x, Km \rangle \\ &= \langle x, \langle y, e_1 \rangle e_1 + \langle y, e_2 \rangle e_2 + \langle y, e_3 \rangle e_3 + \langle y, e_4 \rangle e_4 \rangle \\ &= \langle x, \langle y, e_1 \rangle e_1 \rangle + \langle x, \langle y, e_2 \rangle e_2 \rangle + \langle x, \langle y, e_3 \rangle e_3 \rangle + \langle x, \langle y, e_4 \rangle e_4 \rangle \\ &= \langle x, e_1 \rangle \overline{\langle y, e_1 \rangle} + \langle x, e_2 \rangle \overline{\langle y, e_2 \rangle} + \langle x, e_3 \rangle \overline{\langle y, e_3 \rangle} + \langle x, e_4 \rangle \overline{\langle y, e_4 \rangle} \\ &= \langle x, e_1 \rangle \langle e_1, y \rangle + \langle x, e_2 \rangle \langle e_2, y \rangle + \langle x, e_3 \rangle \langle e_3, y \rangle + \langle x, e_4 \rangle \langle e_4, y \rangle \\ &= \langle \langle x, e_1 \rangle e_1 + \langle x, e_2 \rangle e_2 + \langle x, e_3 \rangle e_3 + \langle x, e_4 \rangle e_4, y \rangle. \end{aligned}$$

Also for $x \in \mathcal{H}$ we have,

$$\begin{aligned}\|K^*x\|^2 &= \|\langle x, e_1 \rangle e_1 + \langle x, e_2 \rangle e_2 + \langle x, e_3 \rangle e_3 + \langle x, e_4 \rangle e_4\|^2 \\ &= |\langle x, e_1 \rangle|^2 + |\langle x, e_2 \rangle|^2 + |\langle x, e_3 \rangle|^2 + |\langle x, e_4 \rangle|^2 \\ &= \sum_{i=1}^4 \langle \Phi_i x, \Psi_i x \rangle.\end{aligned}$$

Therefore, $(\Phi, \Psi)_K$ is a Parseval K -bi- g -frame for \mathcal{H} .

Theorem 3.9. $(\Phi, \Psi)_K$ is a K -bi- g -frame if and only if

$$(\Psi, \Phi)_K = (\{\Psi_i\}_{i \in I}, \{\Phi_i\}_{i \in I})$$

is a K -bi- g -frame.

Proof. Let $(\Phi, \Psi)_K$ be a K -bi- g -frame with bounds A and B . Then, for every $x \in \mathcal{H}$,

$$A \|K^*x\|^2 \leq \sum_{i \in I} \langle \Phi_i x, \Psi_i x \rangle \leq B \|x\|^2.$$

Now, we can write

$$\begin{aligned}\sum_{i \in I} \langle \Phi_i x, \Psi_i x \rangle &= \overline{\sum_{i \in I} \langle \Phi_i x, \Psi_i x \rangle} \\ &= \sum_{i \in I} \overline{\langle \Phi_i x, \Psi_i x \rangle} \\ &= \sum_{i \in I} \langle \Psi_i x, \Phi_i x \rangle.\end{aligned}$$

Therefore, $A \|K^*x\|^2 \leq \sum_{i \in I} \langle \Psi_i x, \Phi_i x \rangle \leq B \|x\|^2$. This implies that, $(\Psi, \Phi)_K$ is a K -bi- g -frame with bounds A and B . The reverse of this statement can be proved similarly.. \square

Theorem 3.10. Let $K_1, K_2 \in \mathcal{B}(\mathcal{H})$. If $(\Phi, \Psi)_{K_j}$ is a K_j -bi- g -frame for $j \in \{1, 2\}$ and α_1, α_2 are scalars, then the following holds:

- (1) $(\Phi, \Psi)_K$ is a $(\alpha_1 K_1 + \alpha_2 K_2)$ -bi- g -frame.
- (2) $(\Phi, \Psi)_K$ is a $K_1 K_2$ -bi- g -frame.

Proof. (1) Let $(\Phi, \Psi)_{K_j}$ be a K_j -bi- g -frame for $j = 1, 2$. For $j = 1$, there exist two constants $0 < A \leq B < \infty$ such that

$$A \|K_1^*x\|^2 \leq \sum_{i \in I} \langle \Phi_i x, \Psi_i x \rangle \leq B \|x\|^2, \quad \text{for all } x \in \mathcal{H}.$$

Similarly, for $j = 2$, there exist two constants $0 < C \leq D < \infty$ such that

$$C \|K_2^* x\|^2 \leq \sum_{i \in I} \langle \Phi_i x, \Psi_i x \rangle \leq D \|x\|^2, \quad \text{for all } x \in \mathcal{H}.$$

Now, we can write

$$\begin{aligned} \|(\alpha_1 K_1 + \alpha_2 K_2)^* x\|^2 &\leq |\alpha_1|^2 \|K_1^* x\|^2 + |\alpha_2|^2 \|K_2^* x\|^2 \\ &\leq |\alpha_1|^2 \left(\frac{1}{A} \sum_{i \in I} \langle \Phi_i x, \Psi_i x \rangle \right) + |\alpha_2|^2 \left(\frac{1}{C} \sum_{i \in I} \langle \Phi_i x, \Psi_i x \rangle \right) \\ &= \left(\frac{|\alpha_1|^2}{A} + \frac{|\alpha_2|^2}{C} \right) \sum_{i \in I} \langle \Phi_i x, \Psi_i x \rangle. \end{aligned}$$

It follows that

$$\left(\frac{AC}{C|\alpha_1|^2 + A|\alpha_2|^2} \right) \|(\alpha_1 K_1 + \alpha_2 K_2)^* x\|^2 \leq \sum_{i \in I} \langle \Phi_i x, \Psi_i x \rangle.$$

Hence, $(\Phi, \Psi)_K$ satisfies the lower K -bi- g -frame condition. We have

$$\sum_{i \in I} \langle \Phi_i x, \Psi_i x \rangle \leq \min\{B, D\} \|x\|^2, \quad \text{for all } x \in \mathcal{H}.$$

It follows that

$$\begin{aligned} &\left(\frac{AC}{C|\alpha_1|^2 + A|\alpha_2|^2} \right) \|(\alpha_1 K_1 + \alpha_2 K_2)^* x\|^2 \\ &\leq \sum_{i \in I} \langle \Phi_i x, \Psi_i x \rangle \leq \min\{B, D\} \|x\|^2, \quad \text{for all } x \in \mathcal{H}. \end{aligned}$$

Therefore, $(\Phi, \Psi)_K$ is a $(\alpha_1 K_1 + \alpha_2 K_2)$ -bi- g -frame.

(2) Now, for each $x \in \mathcal{H}$, we have

$$\|(K_1 K_2)^* x\|^2 = \|K_2^* K_1^* x\|^2 \leq \|K_2^*\|^2 \|K_1^* x\|^2.$$

Since $(\Phi, \Psi)_K$ is a K_1 -bi- g -frame, there exist two constants $0 < A \leq B < \infty$ such that

$$A \|K_1^* x\|^2 \leq \sum_{i \in I} \langle \Phi_i x, \Psi_i x \rangle \leq B \|x\|^2, \quad \text{for all } x \in \mathcal{H}.$$

Therefore,

$$\frac{1}{\|K_2^*\|^2} \|(K_1 K_2)^* x\|^2 \leq \|K_2^* x\|^2 \leq \frac{1}{A} \sum_{i \in I} \langle \Phi_i x, \Psi_i x \rangle \leq \frac{B}{A} \|x\|^2.$$

This implies that

$$\frac{A}{\|K_2^*\|^2} \|(K_1 K_2)^* x\|^2 \leq \sum_{i \in I} \langle \Phi_i x, \Psi_i x \rangle \leq B \|x\|^2, \quad \text{for all } x \in \mathcal{H}.$$

Therefore, $(\Phi, \Psi)_K$ is a $K_1 K_2$ -bi- g -frame for \mathcal{H} . \square

Corollary 3.11. *Let $n \in \mathbb{N} \setminus \{0, 1\}$ and $K_i \in \mathcal{B}(\mathcal{H})$ for $j \in \llbracket 1; n \rrbracket$. If $(\Phi, \Psi)_K$ is a K_j -bi- g -frame for $j \in \llbracket 1; n \rrbracket$ and $\alpha_1, \alpha_2, \dots, \alpha_n$ are non-zero scalars, then the following holds:*

- (1) $(\Phi, \Psi)_K$ is a $(\sum_{j=1}^n \alpha_j K_i)$ -bi- g -frame.
- (2) $(\Phi, \Psi)_K$ is a $(K_1 K_2 \cdots K_n)$ -bi- g -frame.

Proof. (1) Suppose that $n \in \mathbb{N} \setminus \{0, 1\}$ and for every $j \in \llbracket 1; n \rrbracket$, $(\Phi, \Psi)_K$ is a K_j -bi- g -frame. Then for each $j \in \llbracket 1; n \rrbracket$, there exist positive constants $0 < A_j \leq B_j < \infty$ such that

$$A_j \|K_i^* x\|^2 \leq \sum_{i \in I} \langle \Phi_i x, \Psi_i x \rangle \leq B_j \|x\|^2, \quad \text{for all } x \in \mathcal{H}.$$

Now, we can write

$$\begin{aligned} & \left\| \left(\sum_{j=1}^n \alpha_j K_i \right)^* x \right\|^2 \\ &= \|\alpha_1 K_1^* x + (\alpha_2 K_2 + \cdots + \alpha_n K_n)^* x\|^2 \\ &\leq |\alpha_1|^2 \|K_1^* x\|^2 + \|(\alpha_2 K_2 + \cdots + \alpha_n K_n)^* x\|^2 \\ &\leq |\alpha_1|^2 \|K_1^* x\|^2 + \cdots + |\alpha_n|^2 \|K_n^* x\|^2 \\ &\leq |\alpha_1|^2 \left(\frac{1}{A_1} \sum_{i \in I} \langle \Phi_i x, \Psi_i x \rangle \right) + \cdots + |\alpha_n|^2 \left(\frac{1}{A_n} \sum_{i \in I} \langle \Phi_i x, \Psi_i x \rangle \right) \\ &= \left(\frac{|\alpha_1|^2}{A_1} + \cdots + \frac{|\alpha_n|^2}{A_n} \right) \sum_{i \in I} \langle \Phi_i x, \Psi_i x \rangle \\ &= \left(\sum_{j=1}^n \frac{|\alpha_j|^2}{A_j} \right) \sum_{i \in I} \langle \Phi_i x, \Psi_i x \rangle. \end{aligned}$$

Hence, $(\Phi, \Psi)_K$ satisfies the lower frame condition. And we have

$$\sum_{i \in I} \langle \Phi_i x, \Psi_i x \rangle \leq \min_{j \in \llbracket 1; n \rrbracket} \{B_j\} \|x\|^2, \quad \text{for all } x \in \mathcal{H}.$$

It follows that

$$\begin{aligned} \left(\sum_{j=1}^n \frac{|\alpha_j|^2}{A_j} \right)^{-1} \left\| \left(\sum_{j=1}^n \alpha_j K_i \right)^* x \right\|^2 &\leq \sum_{i \in I} \langle \Phi_i x, \Psi_i x \rangle \\ &\leq \min_{j \in \llbracket 1; n \rrbracket} \{B_j\} \|x\|^2, \text{ for all } x \in \mathcal{H}. \end{aligned}$$

Hence, $(\Phi, \Psi)_K$ is a $(\sum_{j=1}^n \alpha_j K_i)$ -bi- g -frame.

(2) Now, for each $x \in \mathcal{H}$, we have

$$\|(K_1 K_2 \cdots K_n)^* x\|^2 = \|K_n^* \cdots K_1^* x\|^2 \leq \|K_n^* \cdots K_2^*\|^2 \|K_1^* x\|^2.$$

Since $(\Phi, \Psi)_K$ is a K_1 -bi- g -frame, there exist two constants $0 < A_1 \leq B_1 < \infty$ such that

$$A_1 \|K_1^* x\|^2 \leq \sum_{i \in I} \langle \Phi_i x, \Psi_i x \rangle \leq B_1 \|x\|^2, \text{ for all } x \in \mathcal{H}.$$

Therefore,

$$\frac{1}{\|K_n^* \cdots K_2^*\|^2} \|(K_1 K_2 \cdots K_n)^* x\|^2 \leq \frac{1}{A_1} \sum_{i \in I} \langle \Phi_i x, \Psi_i x \rangle \leq \frac{B_1}{A_1} \|x\|^2.$$

This implies that

$$\frac{A_1}{\|K_n^* \cdots K_2^*\|^2} \|(K_1 K_2 \cdots K_n)^* x\|^2 \leq \sum_{i \in I} \langle \Phi_i x, \Psi_i x \rangle \leq B_1 \|x\|^2, \text{ for all } x \in \mathcal{H}.$$

Therefore, $(\Phi, \Psi)_K$ is a $(K_1 K_2 \cdots K_n)$ -bi- g -frame for \mathcal{H} . □

Theorem 3.12. *Let $K \in \mathcal{B}(\mathcal{H})$ with $\|K\| \geq 1$. Then every ordinary bi- g -frame is a K -bi- g -frame for \mathcal{H} with respect to $\{\mathcal{K}_i\}_{i \in I}$.*

Proof. Suppose that $(\Phi, \Psi)_K$ is a bi- g -frame for \mathcal{H} . Then there exist two constants $0 < A \leq B < \infty$ such that

$$A \|x\|^2 \leq \sum_{i \in I} \langle \Phi_i x, \Psi_i x \rangle \leq B \|x\|^2, \text{ for all } x \in \mathcal{H}.$$

For $K \in \mathcal{B}(\mathcal{H})$, we have $\|K^* x\|^2 \leq \|K\|^2 \|x\|^2$, for all $x \in \mathcal{H}$. Since $\|K\| \geq 1$, we obtain $\frac{1}{\|K\|^2} \|K^* x\|^2 \leq \|x\|^2$, for all $x \in \mathcal{H}$. Therefore,

$$\frac{A}{\|K\|^2} \|K^* x\|^2 \leq A \|x\|^2 \leq \sum_{i \in I} \langle \Phi_i x, \Psi_i x \rangle \leq B \|x\|^2, \text{ for all } x \in \mathcal{H}.$$

Therefore, $(\Phi, \Psi)_K$ is a K -bi- g -frame for \mathcal{H} . \square

Theorem 3.13. *Let $(\Phi, \Psi)_K$ be a bi- g -frame for \mathcal{H} . Then $(\Phi, \Psi)_K$ is a K -bi- g -frame for \mathcal{H} with respect to $\{\mathcal{K}_i\}_{i \in I}$ if and only if there exists $A > 0$ such that $S_{\Phi, \Psi} \geq A K K^*$, where $S_{\Phi, \Psi}$ is the bi- g -frame operator for $(\Phi, \Psi)_K$.*

Proof. $(\Phi, \Psi)_K$ is a K -bi- g -frame for \mathcal{H} with frame bounds A, B and bi- g -frame operator $S_{\Phi, \Psi}$ if and only if

$$A \|K^* x\|^2 \leq \langle S_{\Phi, \Psi} x, x \rangle = \left\langle \sum_{i \in I} \Psi_i^* \Phi_i x, x \right\rangle = \sum_{i \in I} \langle \Phi_i x, \Psi_i x \rangle \leq B \|x\|^2, \quad \forall x \in \mathcal{H},$$

that is, $\langle A K K^* x, x \rangle \leq \langle S_{\Phi, \Psi} x, x \rangle \leq \langle B x, x \rangle$, for all $x \in \mathcal{H}$. So the conclusion holds. \square

Corollary 3.14. *Let $(\Phi, \Psi)_K$ be a bi- g -frame for \mathcal{H} . Then $(\Phi, \Psi)_K$ is a tight K -bi- g -frame for \mathcal{H} with respect to $\{\mathcal{K}_i\}_{i \in I}$ if and only if there exists $A > 0$ such that $S_{\Phi, \Psi} = A K K^*$, where $S_{\Phi, \Psi}$ is the bi- g -frame operator for $(\Phi, \Psi)_K$.*

Proof. The proof is evident; one can simply utilize the definition of a tight K -bi- g -frame (see Definition 3.7). \square

Theorem 3.15. *Let $(\Phi, \Psi)_K$ be a bi- g -frame for \mathcal{H} , with bi- g -frame operator $S_{\Phi, \Psi}$ such that $S_{\Phi, \Psi}^{\frac{1}{2}*} = S_{\Phi, \Psi}^{\frac{1}{2}}$. Then $(\Phi, \Psi)_K$ is a K -bi- g -frame for \mathcal{H} with respect to $\{\mathcal{K}_i\}_{i \in I}$ if and only if $K = S_{\Phi, \Psi}^{\frac{1}{2}} U$, for some $U \in \mathcal{B}(\mathcal{H})$.*

Proof. Assume that $(\Phi, \Psi)_K$ is a K -bi- g -frame. By Theorem 3.13, there exists $A > 0$ such that $A K K^* \leq S_{\Phi, \Psi}^{\frac{1}{2}*} S_{\Phi, \Psi}^{\frac{1}{2}}$. Then, $K K^* \leq \frac{1}{A} S_{\Phi, \Psi}^{\frac{1}{2}} S_{\Phi, \Psi}^{\frac{1}{2}*}$. So, $K K^* \leq \lambda^2 S_{\Phi, \Psi}^{\frac{1}{2}} S_{\Phi, \Psi}^{\frac{1}{2}*}$, where $\lambda = \frac{1}{\sqrt{A}} > 0$. Therefore, by Theorem 2.4, $K = S_{\Phi, \Psi}^{\frac{1}{2}} U$, for some $U \in \mathcal{B}(\mathcal{H})$.

Conversely, assume $K = S_{\Phi, \Psi}^{\frac{1}{2}} W$, for some $W \in \mathcal{B}(\mathcal{H})$. Then by Theorem 2.4, there exists a positive number λ such that $K K^* \leq \lambda^2 S_{\Phi, \Psi}^{\frac{1}{2}*} S_{\Phi, \Psi}^{\frac{1}{2}}$. Then, $\mu K K^* \leq S_{\Phi, \Psi}^{\frac{1}{2}} S_{\Phi, \Psi}^{\frac{1}{2}*}$, where $\mu = \frac{1}{\sqrt{\lambda}} > 0$. Since $S_{\Phi, \Psi}^{\frac{1}{2}*} = S_{\Phi, \Psi}^{\frac{1}{2}}$, by Theorem 3.13, $(\Phi, \Psi)_K$ is a K -bi- g -frame for \mathcal{H} . \square

4. OPERATORS ON K -BI- g -FRAME IN HILBERT SPACES

In the following proposition, we will require a necessary condition for the operator \mathcal{T} such that $(\Phi, \Psi)_K$ will be a \mathcal{T} -bi- g -frame for \mathcal{H} with respect to $\{\mathcal{K}_i\}_{i \in I}$.

Proposition 4.1. *Let $(\Phi, \Psi)_K$ be a K -bi- g -frame for \mathcal{H} with $K \in \mathcal{B}(\mathcal{H})$. Let $\mathcal{T} \in \mathcal{B}(\mathcal{H})$ with $R(\mathcal{T}) \subseteq \mathcal{R}(K)$. Then $(\Phi, \Psi)_K$ is a \mathcal{T} -bi- g -frame for \mathcal{H} .*

Proof. Suppose that $(\Phi, \Psi)_K$ is a K -bi- g -frame for \mathcal{H} . Then there are positive constants $0 < A \leq B < \infty$ such that

$$A \|K^*x\|^2 \leq \sum_{i \in I} \langle \Phi_i x, \Psi_i x \rangle \leq B \|x\|^2, \quad \text{for all } x \in \mathcal{H}.$$

Since $R(\mathcal{T}) \subseteq \mathcal{R}(K)$, by Theorem 2.4, there exists $\alpha > 0$ such that $\mathcal{T}\mathcal{T}^* \leq \alpha^2 K K^*$. Hence,

$$\frac{A}{\alpha^2} \|\mathcal{T}^*x\|^2 \leq A \|K^*x\|^2 \leq \sum_{i \in I} \langle \Phi_i x, \Psi_i x \rangle \leq B \|x\|^2, \quad \text{for all } x \in \mathcal{H}.$$

Hence, $(\Phi, \Psi)_K$ is a \mathcal{T} -bi- g -frame for \mathcal{H} . \square

Theorem 4.2. *Let $(\Phi, \Psi)_K$ be a K -bi- g -frame for \mathcal{H} with bi- g -frame operator $S_{\Phi, \Psi}$ and let \mathcal{T} be a positive operator. Then*

$$(\Phi + \mathcal{T}\Phi, \Psi + \mathcal{T}\Psi)_K = (\{\Phi_i + \mathcal{T}\Phi_i\}_{i \in I}, \{\Psi_i + \mathcal{T}\Psi_i\}_{i \in I})$$

is a K -bi- g -frame.

Moreover, for any positive integer n , $(\{\Phi_i + \mathcal{T}^n\Phi_i\}_{i \in I}, \{\Psi_i + \mathcal{T}^n\Psi_i\}_{i \in I})$ is a K -bi- g -frame for \mathcal{H} .

Proof. Suppose that $(\Phi, \Psi)_K$ is a K -bi- g -frame for \mathcal{H} . Then by Theorem 3.13, there exists $m > 0$ such that $S_{\Phi, \Psi} \geq m K K^*$. For every $x \in \mathcal{H}$, we have

$$\begin{aligned} S_{(\Phi + \mathcal{T}\Phi), (\Psi + \mathcal{T}\Psi)} &= \sum_{i \in I} (\Psi_i + \mathcal{T}\Psi_i)^* (\Phi_i + \mathcal{T}\Phi_i) \\ &= (I + \mathcal{T})^* \sum_{i \in I} \Psi_i^* \Phi_i (I + \mathcal{T}) \\ &= (I + \mathcal{T})^* S_{\Phi, \Psi} (I + \mathcal{T}). \end{aligned}$$

Hence, the frame operator for $(\Phi + \mathcal{T}\Phi, \Psi + \mathcal{T}\Psi)_K$ is $(I + \mathcal{T})^* S_{\Phi, \Psi} (I + \mathcal{T})$. Since \mathcal{T} is positive operator we get,

$$(I + \mathcal{T})^* S_{\Phi, \Psi} (I + \mathcal{T}) = S_{\Phi, \Psi} + S_{\Phi, \Psi} \mathcal{T} + \mathcal{T}^* S_{\Phi, \Psi} + \mathcal{T}^* S_{\Phi, \Psi} \mathcal{T} \geq S_{\Phi, \Psi} \geq m K K^*,$$

Once again, applying Theorem 3.13, we can conclude that $(\Phi + \mathcal{T}\Phi, \Psi + \mathcal{T}\Psi)_K$ is a K -bi- g -frame for \mathcal{H} .

Now, for any positive integer n , the frame operator for

$$S_{(\Phi + \mathcal{T}^n\Phi), (\Psi + \mathcal{T}^n\Psi)} = (I + \mathcal{T}^n)^* S_{\Phi, \Psi} (I + \mathcal{T}^n) \geq S_{\Phi, \Psi}.$$

Hence, $(\{\Phi_i + \mathcal{T}^n\Phi_i\}_{i \in I}, \{\Psi_i + \mathcal{T}^n\Psi_i\}_{i \in I})$ is a K -bi- g -frame for \mathcal{H} . \square

Theorem 4.3. *Let $K \in \mathcal{B}(\mathcal{H})$ and $(\Phi, \Psi)_K$ be a K -bi- g -frame for \mathcal{H} with respect to $\{\mathcal{K}_i\}_{i \in I}$, and let $M \in \mathcal{B}(\mathcal{H})$ be an operator with a closed range such that $MK = KM$. If $\mathcal{R}(K^*) \subset \mathcal{R}(M)$, then*

$$(\Phi M^*, \Psi M^*)_K = (\{\Phi_i M^*\}_{i \in I}, \{\Psi_i M^*\}_{i \in I})$$

is a K -bi- g -frame for \mathcal{H} with respect to $\{\mathcal{K}_i\}_{i \in I}$.

Proof. For every $x \in \mathcal{H}$, we have $A \|K^*x\|^2 \leq \sum_{i \in I} \langle \Phi_i x, \Psi_i x \rangle \leq B \|x\|^2$. Then for $M \in \mathcal{B}(\mathcal{H})$, we get

$$\sum_{i \in I} \langle \Phi_i M^* x, \Psi_i M^* x \rangle \leq B \|M^* x\|^2 \leq B \|M\|^2 \|x\|^2.$$

Since M has a closed range and $\mathcal{R}(K^*) \subset \mathcal{R}(M)$,

$$\begin{aligned} \|K^*x\|^2 &= \|MM^\dagger K^*x\|^2 \\ &= \left\| (M^\dagger)^* M^* K^* x \right\|^2 \\ &= \left\| (M^\dagger)^* K^* M^* x \right\|^2 \\ &\leq \|M^\dagger\|^2 \|K^* M^* x\|^2. \end{aligned}$$

On the other hand, we have

$$\sum_{i \in I} \langle \Phi_i M^* x, \Psi_i M^* x \rangle \geq A \|K^* M^* x\|^2 \geq A \|M^\dagger\|^{-2} \|K^* x\|^2.$$

Hence, $(\Phi M^*, \Psi M^*)_K$ is a K -bi- g -frame for \mathcal{H} with respect to $\{\mathcal{K}_i\}_{i \in I}$. \square

Theorem 4.4. *Let $K, M \in \mathcal{B}(\mathcal{H})$ and $(\Phi, \Psi)_K$ be a δ -tight K -bi- g -frame for \mathcal{H} with respect to $\{\mathcal{K}_i\}_{i \in I}$. If $\mathcal{R}(K^*) = \mathcal{H}$ and $MK = KM$, then $(\Phi M^*, \Psi M^*)_K = (\{\Phi_i M^*\}_{i \in I}, \{\Psi_i M^*\}_{i \in I})$ is a K -bi- g -frame for \mathcal{H} with respect to $\{\mathcal{K}_i\}_{i \in I}$ if and only if M is surjective.*

Proof. Suppose that $(\{\Phi_i M^*\}_{i \in I}, \{\Psi_i M^*\}_{i \in I})$ is a K -bi- g -frame for \mathcal{H} with respect to $\{\mathcal{K}_i\}_{i \in I}$ with frame bounds A and B . That is, for every $x \in \mathcal{H}$,

$$A \|K^*x\|^2 \leq \sum_{i \in I} \langle \Phi_i M^* x, \Psi_i M^* x \rangle \leq B \|x\|^2.$$

and we have

$$\delta \|K^*x\|^2 = \sum_{i \in I} \langle \Phi_i x, \Psi_i x \rangle, \text{ for all } x \in \mathcal{H}.$$

Since $K^* M^* = M^* K^*$, we obtain

$$\delta \|M^* K^* x\|^2 = \delta \|K^* M^* x\|^2 = \sum_{i \in I} \langle \Phi_i M^* x, \Psi_i M^* x \rangle.$$

Hence, $\|M^*K^*x\|^2 = \frac{1}{\delta} \sum_{i \in I} \langle \Phi_i M^*x, \Psi_i M^*x \rangle \geq \frac{A}{\delta} \|K^*x\|^2$. From which we conclude that M^* is injective. Since $\mathcal{R}(K^*) = \mathcal{H}$, M is surjective as a consequence. \square

5. STABILITY OF K -BI- g -FRAMES FOR HILBERT SPACES

Theorem 5.1. *Suppose that $K \in \mathcal{B}(\mathcal{H})$ and K has closed range. Let $\Phi = \{\Phi_i : \Phi_i \in \mathcal{B}(\mathcal{H}, \mathcal{K}_i)\}_{i \in I}$ and $\Psi = \{\Psi_i : \Psi_i \in \mathcal{B}(\mathcal{H}, \mathcal{K}_i)\}_{i \in I}$ be two g -Bessel sequences with bounds B_Φ and B_Ψ respectively. Assume that $(\Phi, \Psi)_K$ is a K -bi- g -frame for \mathcal{H} with respect to $\{\mathcal{K}_i\}_{i \in I}$ with bounds A and B , and let $(\{\Lambda_i\}_{i \in I}, \{\Gamma_i\}_{i \in I})$ be a pair of sequences in $\mathcal{B}(\mathcal{H}, \mathcal{K}_i)$ for $i \in I$. If there exist constants $\alpha, \beta, \gamma \in [0, 1)$ such that $\max\{\alpha + \gamma, \beta\} < 1$ and*

$$\left\| \sum_{i \in J} (\Psi_i^* \Phi_i - \Gamma_i^* \Lambda_i) x \right\| \leq \alpha \left\| \sum_{i \in J} \Psi_i^* \Phi_i x \right\| + \beta \left\| \sum_{i \in J} \Gamma_i^* \Lambda_i x \right\| + \gamma \|x\|,$$
 where J is any finite subset of I and $\|S_{\Phi, \Psi}^{-1} x\| \leq \|x\|$, where $S_{\Phi, \Psi}$ is the bi- g -frame operator of $(\Phi, \Psi)_K$. Then $(\{\Lambda_i\}_{i \in I}, \{\Gamma_i\}_{i \in I})$ is a K -bi- g -frame for \mathcal{H} with respect to $\{\mathcal{K}_i\}_{i \in I}$ with bounds

$$A \frac{[1-(\alpha+\gamma)]}{(1+\beta)}, \frac{(1+\alpha)\sqrt{B_\Phi B_\Psi}+\gamma}{1-\beta}.$$

Proof. Suppose that $J \subset I$, $|J| < +\infty$. For any $x \in \mathcal{H}$, we have

$$\begin{aligned} \left\| \sum_{i \in J} \Gamma_i^* \Lambda_i x \right\| &\leq \left\| \sum_{i \in J} (\Gamma_i^* \Lambda_i - \Psi_i^* \Phi_i) x \right\| + \left\| \sum_{i \in J} \Psi_i^* \Phi_i x \right\| \\ &\leq (1 + \alpha) \left\| \sum_{i \in J} \Psi_i^* \Phi_i x \right\| + \beta \left\| \sum_{i \in J} \Gamma_i^* \Lambda_i x \right\| + \gamma \|x\|. \end{aligned}$$

Then $\left\| \sum_{i \in J} \Gamma_i^* \Lambda_i x \right\| \leq \frac{1+\alpha}{1-\beta} \left\| \sum_{i \in J} \Psi_i^* \Phi_i x \right\| + \frac{\gamma}{1-\beta} \|x\|$. Since

$$\begin{aligned} \left\| \sum_{i \in J} \Psi_i^* \Phi_i x \right\| &= \sup_{\|y\|=1} \left| \left\langle \sum_{i \in J} \Psi_i^* \Phi_i x, y \right\rangle \right| \\ &= \sup_{\|y\|=1} \left| \left\langle \sum_{i \in J} \Phi_i x, \Psi_i y \right\rangle \right| \\ &\leq \left(\sum_{i \in J} \|\Phi_i x\|^2 \right)^{\frac{1}{2}} \sup_{\|y\|=1} \left(\sum_{i \in J} \|\Psi_i y\|^2 \right)^{\frac{1}{2}} \\ &\leq \sqrt{B_\Phi B_\Psi} \|x\|. \end{aligned}$$

Hence, for all $x \in H$, we have

$$\left\| \sum_{i \in J} \Gamma_i^* \Lambda_i x \right\| \leq \frac{(1 + \alpha) \sqrt{B_\Phi B_\Psi}}{1 - \beta} \|x\| + \frac{\gamma}{1 - \beta} \|x\| = \frac{(1 + \alpha) \sqrt{B_\Phi B_\Psi} + \gamma}{1 - \beta} \|x\|.$$

We consider

$$\mathcal{M} : \mathcal{H} \rightarrow \mathcal{H}, \quad \mathcal{M}x = \sum_{i \in J} \Gamma_i^* \Lambda_i x, x \in \mathcal{H}.$$

Then \mathcal{M} is well-defined, bounded, and $\|\mathcal{M}\| \leq \frac{(1 + \alpha) \sqrt{B_\Phi B_\Psi} + \gamma}{1 - \beta}$. For every $x \in \mathcal{H}$, we have

$$\langle \mathcal{M}x, x \rangle = \left\langle \sum_{i \in J} \Gamma_i^* \Lambda_i x, x \right\rangle = \sum_{i \in J} \langle \Lambda_i x, \Gamma_i x \rangle \leq \|\mathcal{M}\| \|x\|^2. \quad (5.1)$$

It implies that $(\{\Lambda_i\}_{i \in J}, \{\Gamma_i\}_{i \in J})$ is a bi- g -Bessel sequence for \mathcal{H} with respect to $\{\mathcal{K}_i\}_{i \in J}$. Let $S_{\Phi, \Psi}$ be the bi- g -frame operator of $(\Phi, \Psi)_K$. According to the theorem hypothesis, we obtain

$$\|(S_{\Phi, \Psi} - \mathcal{M})x\| \leq \alpha \|S_{\Phi, \Psi}x\| + \beta \|\mathcal{M}x\| + \gamma \|x\|, \forall x \in \mathcal{H}.$$

Then,

$$\begin{aligned} \|x - \mathcal{M}S_{\Phi, \Psi}^{-1}x\| &\leq \alpha \|x\| + \beta \|\mathcal{M}S_{\Phi, \Psi}^{-1}x\| + \gamma \|S_{\Phi, \Psi}^{-1}x\| \\ &\leq (\alpha + \gamma) \|x\| + \beta \|\mathcal{M}S_{\Phi, \Psi}^{-1}x\|. \end{aligned}$$

Since $0 \leq \max\{\alpha + \gamma, \beta\} < 1$, According to Lemma 2.5, we get

$$\frac{1 - \beta}{1 + (\alpha + \gamma)} \leq \|S_{\Phi, \Psi} \mathcal{M}^{-1}\| \leq \frac{1 + \beta}{1 - (\alpha + \gamma)}.$$

Since $\|S_{\Phi, \Psi}\| = \|S_{\Phi, \Psi} \mathcal{M}^{-1} \mathcal{M}\| \leq \|S_{\Phi, \Psi} \mathcal{M}^{-1}\| \|\mathcal{M}\|$. Therefore,

$$\|\mathcal{M}\| \geq \frac{A}{\|S_{\Phi, \Psi} \mathcal{M}^{-1}\|} \|KK^*\| \geq A \frac{[1 - (\alpha + \gamma)]}{(1 + \beta)} \|KK^*\|. \quad (5.2)$$

Hence, by Theorem 3.13, we can conclude that $(\{\Lambda_i\}_{i \in I}, \{\Gamma_i\}_{i \in I})$ is a K -bi- g -frame for \mathcal{H} with respect to $\{\mathcal{K}_i\}_{i \in I}$. \square

Corollary 5.2. *Suppose that $K \in \mathcal{B}(\mathcal{H})$ and K has closed range. Let $\Phi = \{\Phi_i : \Phi_i \in \mathcal{B}(\mathcal{H}, \mathcal{K}_i)\}_{i \in I}$ and $\Psi = \{\Psi_i : \Psi_i \in \mathcal{B}(\mathcal{H}, \mathcal{K}_i)\}_{i \in I}$ be two g -Bessel sequences with bounds B_Φ, B_Ψ respectively. Assume that $(\Phi, \Psi)_K$ is a K -bi- g -frame for \mathcal{H} with respect to $\{\mathcal{K}_i\}_{i \in I}$ with bounds A and B , and*

$(\{\Lambda_i\}_{i \in I}, \{\Gamma_i\}_{i \in I})$ is a pair of sequences for \mathcal{H} with respect to $\{\mathcal{K}_i\}_{i \in I}$. If there exists a constant $0 < D < A$ such that

$$\left\| \sum_{i \in I} (\Psi_i^* \Phi_i - \Gamma_i^* \Lambda_i) x \right\| \leq D \|K^* x\|, \quad \forall x \in \mathcal{H},$$

and $\|S_{\Phi, \Psi}^{-1} x\| \leq \|x\|$, where $S_{\Phi, \Psi}$ is the bi-g-frame operator of $(\Phi, \Psi)_K$, then $(\{\Lambda_i\}_{i \in I}, \{\Gamma_i\}_{i \in I})$ is a K -bi-g-frame for \mathcal{H} with respect to $\{\mathcal{K}_i\}_{i \in I}$ with bounds $A \left(1 - D \sqrt{\frac{B}{A}}\right)$ and $\left(\sqrt{B_\Phi B_\Psi} + D \sqrt{\frac{B}{A}}\right)$.

Proof. For any $x \in \mathcal{H}$, we have $\|K^* x\| \leq \frac{1}{\sqrt{A}} \left(\sum_{i \in I} \langle \Phi_i x, \Psi_i x \rangle\right)^{\frac{1}{2}}$. Then

$$\begin{aligned} \left\| \sum_{i \in I} (\Psi_i^* \Phi_i - \Gamma_i^* \Lambda_i) x \right\| &\leq D \|K^* x\| \\ &\leq \frac{1}{\sqrt{A}} \left(\sum_{i \in I} \langle \Phi_i x, \Psi_i x \rangle \right)^{\frac{1}{2}} \\ &\leq D \sqrt{\frac{B}{A}} \|x\|. \end{aligned}$$

By letting $\alpha, \beta = 0, \gamma = D \sqrt{\frac{B}{A}}$ in Theorem 5.1, $(\{\Lambda_i\}_{i \in I}, \{\Gamma_i\}_{i \in I})$ is a K -bi-g-frame for \mathcal{H} with respect to $\{\mathcal{K}_i\}_{i \in I}$ with bounds $A \left(1 - D \sqrt{\frac{B}{A}}\right)$ and $\left(\sqrt{B_\Phi B_\Psi} + D \sqrt{\frac{B}{A}}\right)$. \square

Theorem 5.3. Suppose that $K \in \mathcal{B}(\mathcal{H})$ and K has closed range. Let $\Phi = \{\Phi_i : \Phi_i \in \mathcal{B}(\mathcal{H}, \mathcal{K}_i)\}_{i \in I}$ and $\Psi = \{\Psi_i : \Psi_i \in \mathcal{B}(\mathcal{H}, \mathcal{K}_i)\}_{i \in I}$ be two g-Bessel sequences with bounds B_Φ and B_Ψ , respectively. Assume that $(\Phi, \Psi)_K$ is a K -bi-g-frame for \mathcal{H} with respect to $\{\mathcal{K}_i\}_{i \in I}$ with bounds A and B , and let $(\{\Lambda_i\}_{i \in I}, \{\Gamma_i\}_{i \in I})$ be a pair of sequences for \mathcal{H} with respect to $\{\mathcal{K}_i\}_{i \in I}$. If there exist constants $\alpha, \beta, \gamma \in [0, 1)$ such that $\max \left\{ \alpha + \gamma \sqrt{\frac{B}{A}}, \beta \right\} < 1$ and

$$\left\| \sum_{i \in J} (\Psi_i^* \Phi_i - \Gamma_i^* \Lambda_i) x \right\| \leq \alpha \left\| \sum_{i \in J} \Psi_i^* \Phi_i x \right\| + \beta \left\| \sum_{i \in J} \Gamma_i^* \Lambda_i x \right\| + \gamma \|K^* x\|, \quad (5.3)$$

where J is any finite subset of I and $\|S_{\Phi,\Psi}^{-1}x\| \leq \|x\|$, where $S_{\Phi,\Psi}$ is the bi-g-frame operator of $(\Phi, \Psi)_K$, then $(\{\Lambda_i\}_{i \in I}, \{\Gamma_i\}_{i \in I})$ is a K -bi-g-frame for \mathcal{H} with respect to $\{\mathcal{K}_i\}_{i \in I}$ with bounds

$$A \frac{1 - \left(\alpha + \gamma \sqrt{\frac{B}{A}}\right)}{1 + \beta}, \quad \frac{\left[(1 + \alpha)\sqrt{B_\Phi B_\Psi} + \gamma \sqrt{\frac{B}{A}}\right]}{1 - \beta}.$$

Proof. For any $x \in \mathcal{H}$, we have

$$\|K^*x\| \leq \frac{1}{\sqrt{A}} \left(\sum_{i \in I} \langle \Phi_i x, \Psi_i x \rangle \right)^{\frac{1}{2}} \leq \sqrt{\frac{B}{A}} \|x\|. \quad (5.4)$$

Then, the hypothesis 5.3 is equivalent to:

$$\left\| \sum_{i \in J} (\Psi_i^* \Phi_i - \Gamma_i^* \Lambda_i) x \right\| \leq \alpha \left\| \sum_{i \in J} \Psi_i^* \Phi_i x \right\| + \beta \left\| \sum_{i \in J} \Gamma_i^* \Lambda_i x \right\| + \gamma \sqrt{\frac{B}{A}} \|x\|.$$

Therefore, the remaining part of the proof is similar to the proof of Theorem 5.1. \square

Theorem 5.4. Suppose that $K \in \mathcal{B}(\mathcal{H})$ and K has closed range. Let $\Phi = \{\Phi_i : \Phi_i \in \mathcal{B}(\mathcal{H}, \mathcal{K}_i)\}_{i \in I}$ and $\Psi = \{\Psi_i : \Psi_i \in \mathcal{B}(\mathcal{H}, \mathcal{K}_i)\}_{i \in I}$ be two g-Bessel sequences with bounds B_Φ, B_Ψ respectively. Assume that $(\Phi, \Psi)_K$ is a K -bi-g-frame for \mathcal{H} with respect to $\{\mathcal{K}_i\}_{i \in I}$ with bounds A and B and $(\{\Lambda_i\}_{i \in I}, \{\Gamma_i\}_{i \in I})$ be a pair of sequences for \mathcal{H} with respect to $\{\mathcal{K}_i\}_{i \in I}$. If there exist constants $\alpha, \beta, \sigma, \gamma \in [0, 1)$ such that $\max \left\{ \alpha + \sigma + \gamma \sqrt{\frac{B}{A}}, \beta \right\} < 1$ and

$$\left\| \sum_{i \in J} (\Psi_i^* \Phi_i - \Gamma_i^* \Lambda_i) x \right\| \leq \alpha \left\| \sum_{i \in J} \Psi_i^* \Phi_i x \right\| + \beta \left\| \sum_{i \in J} \Gamma_i^* \Lambda_i x \right\| + \sigma \|x\| + \gamma \|K^*x\|, \quad (5.5)$$

where J is any finite subset of I and $\|S_{\Phi,\Psi}^{-1}x\| \leq \|x\|$, where $S_{\Phi,\Psi}$ is the bi-g-frame operator of $(\Phi, \Psi)_K$. Then $(\{\Lambda_i\}_{i \in I}, \{\Gamma_i\}_{i \in I})$ is a K -bi-g-frame for \mathcal{H} with respect to $\{\mathcal{K}_i\}_{i \in I}$ with bounds

$$A \frac{\left[1 - \left(\alpha + \sigma + \gamma \sqrt{\frac{B}{A}}\right)\right]}{(1 + \beta)}, \quad \frac{\left[(1 + \alpha)\sqrt{B_\Phi B_\Psi} + \sigma + \gamma \sqrt{\frac{B}{A}}\right]}{1 - \beta}.$$

Proof. With the inequality 5.4, our hypothesis 5.5 will be equivalent to

$$\left\| \sum_{i \in J} (\Psi_i^* \Phi_i - \Gamma_i^* \Lambda_i) x \right\| \leq \alpha \left\| \sum_{i \in J} \Psi_i^* \Phi_i x \right\| + \beta \left\| \sum_{i \in J} \Gamma_i^* \Lambda_i x \right\| + \left(\sigma + \gamma \sqrt{\frac{B}{A}} \right) \|x\|. \quad (5.6)$$

Therefore, the remaining part of the proof is similar to the proof of Theorem 5.1. \square

Acknowledgments

It is our great pleasure to thank the referee for his careful reading of the paper and for several helpful suggestions.

REFERENCES

1. Y. A. Abramovich and C. D. Aliprantis, *An invitation to operator theory*, Graduate Studies in Mathematics, 50, American Mathematical Society, Providence, RI, 2002.
2. N. Assila, H. Labrigui, A. Touri et al., Integral operator frames on Hilbert C^* -modules, *Ann. Univ. Ferrara*, **70** (2024), 1271–1284.
3. P. G. Cazassa and O. Christensen, Perturbation of operators and applications to frame theory, *J. Fourier Anal. Appl.*, **3** (1997), 543–557.
4. O. Christensen, *An introduction to frames and riesz bases*, Birkhauser, 2016.
5. I. Daubechies, *Ten Lectures on Wavelets*, SIAM, Philadelphia, 1992.
6. I. Daubechies, A. Grossmann and Y. Meyer, Painless nonorthogonal expansions, *J. Math. Phys.*, **27** (1986), 1271–1283.
7. R. G. Douglas, On majorization, factorization and range inclusion of operators on Hilbert space, *Proc. Amer. Math. Soc.*, **17**(2) (1966), 413–415.
8. R. J. Duffin and A. C. Schaeffer, A class of nonharmonic fourier series, *Trans. Amer. Math. Soc.*, **72** (1952), 341–366.
9. A. Fereydooni and A. Safapour, Pair frames, *Results Math.*, **66** (2014), 247–263.
10. M. Firouzi Parizi, A. Alijani, and M. A. Dehghan, Biframes and some of their properties, *J. Inequal. Appl.*, **2022** (2022), Article number: 104.
11. D. Gabor, Theory of communications, *J. Inst. Electr. Eng.*, **93** (1946), 429–457.
12. L. Găvruta, Frames for operators, *Appl. Comput. Harmon. Anal.*, **32** (2012), 139–144.
13. M. Ghiasi, M. Rossafi, M. Mouniane et al, Controlled continuous $*\text{-g}$ -frames in Hilbert C^* -modules, *J. Pseudo-Differ. Oper. Appl.*, **15** (2024), Article number: 2.
14. D. Han and D. Larson, *Frames, Bases and Group Representations*, Memoirs of the American Mathematical Society, Vol. 147, No. 697, American Mathematical Society, Providence, RI, 2000.
15. B. V. Limaye, *Functional analysis*, New Age International Ltd., New Delhi, Second Edition, 1996.
16. H. Massit, M. Rossafi and C. Park, Some relations between continuous generalized frames, *Afr. Mat.*, **35** (2024), Article number: 12.

17. A. Rahimi and A. Fereydooni, Controlled g-frames and their g-multipliers in Hilbert spaces, *An. St. Univ. Ovidius Constanța*, **21**(2) (2013), 223–236.
18. S. M. Ramezani, Bi-g-frame and characterizations of bi-g-frame and Riesz basis, (2023), arXiv:2308.02147.
19. M. Rossafi, M. Ghiati, M. Mouniane et al., Continuous frame in Hilbert C^* -modules, *J. Anal.*, **31** (2023), 2531–2561.
20. M. Rossafi and S. Kabbaj, Generalized frames for $B(H, K)$, *Iran. J. Math. Sci. Inform.*, **17**(1) (2022), 1–9.
21. M. Rossafi, F. D. Nhari, C. Park et al., Continuous g-frames with C^* -valued bounds and their properties, *Complex Anal. Oper. Theory*, **16** (2022), Article number: 44.
22. W. Sun, g-Frames and g-Riesz bases, *J. Math. Anal. Appl.*, **322**(1) (2006), 437–452.
23. X. C. Xiao, Y. C. Zhu, Z. B. Shu and M. L. Ding, g-Frames with bounded linear operators, *Rocky Mountain J. Math.*, **45**(2) (2015), 675–693.

Mohamed Rossafi

Laboratory Analysis, Geometry and Applications, Higher School of Education and Training, University Ibn Tofail, Kenitra, Morocco.

Email: rossafimohamed@gmail.com, mohamed.rossafi1@uit.ac.ma

Abdelilah Karara

Laboratory Analysis, Geometry and Applications, Department of Mathematics, University Ibn Tofail, Kenitra, Morocco.

Email: abdelilah.karara@uit.ac.ma

$K - bi - g$ -FRAMES IN HILBERT SPACES

M. ROSSAFI AND A. KARARA

-قبهای $K - bi - g$ در فضاهای هیلبرت

محمد روصافی^۱ و عبدالله کارارا^۲

^۱آنالیز آزمایشگاهی، هندسه و کاربردها، مدرسه عالی آموزش و پژوهش، دانشگاه ابن طفيل، قنیطره، مراکش

^۲آنالیز آزمایشگاهی، هندسه و کاربردها، گروه ریاضی، دانشگاه ابن طفيل، قنیطره، مراکش

این مقاله مفهوم جدیدی از $g - K - bi$ -قبهای هیلبرت معرفی می‌کند. سپس با کمک یک عملگر با قاب، برخی ویژگی‌ها را بررسی می‌کنیم. در نهایت، چندین نتیجه درباره پایداری $K - bi - g$ -قبهای که با استفاده از روش‌های نظریه قاب به دست آمده‌اند، را بررسی می‌کنیم.

کلمات کلیدی: قاب، K -قب، با قاب، $g - K - bi$ -قبهای هیلبرت.