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K —bi — g—FRAMES IN HILBERT SPACES

M. Rossafi* and A. Karara

ABSTRACT. This paper will introduce the new concept of K-bi-g—frames for Hilbert
spaces. Then we examine some characterizations with the help of a biframe operator.
Finally, we investigate several results about the stability of K-bi-g-frames produced
using frame theory methods.

1. INTRODUCTION

Duffin and Schaffer introduced the notion of frames in Hilbert spaces [3]
in 1952 to research certain difficult nonharmonic Fourier series problems.
Following the fundamental paper [(] by Daubechies, Grossman, and Meyer,
frame theory started to become popular, especially in the more specific con-
text of Gabor frames and wavelet frames [11]. A sequence {®;},.; in H is
called a frame for H if there exist two constants 0 < A < B < oo such that

Al < (2, @) P < Bllz|)?, for all z € H.
1€l
For more detailed information on frame theory, readers are recommended to
consult: [2, 4, 5, 13, 14,16, 21, 20, 19].

The concept of K-frames was introduced by Laura Gavruta [12] and serves
as a tool for investigating atomic systems for a bounded linear operator K in
a separable Hilbert space. A sequence {®;}, ; in H is called a K-frame for
H if there exist two constants 0 < A < B < oo such that

ANK*z]]* < | (x, @) |> < Bllz||, for all z € H.
el

The notion of K-frames generalizes ordinary frames in that the lower frame
bound applies only to elements within the range of K. After that, Xiao et al.
[23] introduced the concept of a K-g-frame, which is a more general framework
than both g-frames and K-frames in Hilbert spaces.

The idea of pair frames, which refers to a pair of sequences in a Hilbert
space, was first presented in [9] by Fereydooni and Safapour. Parizi, Alijani,
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and Dehghan [10] studied biframe, which is a generalization of a controlled
frame in Hilbert space. The concept of a frame is defined by a single sequence,
but to define a biframe we will need two sequences. The concept of a biframe
is a generalization of the controlled frames and a special case of pair frames.

This paper will introduce the concept of K-bi-g-frames in Hilbert space
and present some examples of this type of frame. Moreover, we investigate a
characterization of K-bi-g-frames by using the biframe operator. Finally, in
our exploration of biframes, we investigate some results about the stability
of K-bi-g-frames produced via the use of frame theory.

2. NOTATION AND PRELIMINARIES

Throughout this paper, H represents a separable Hilbert space. The nota-
tion B(H, KC) denotes the collection of all bounded linear operators from H to
the Hilbert space L. When H = I, this set is denoted simply as B(H). We
will use V(7)) and R(T) to denote the null and range space of an operator

T € B(H). Also, GL(H) is the collection of all invertible, bounded linear
operators acting on H. Let {K;},.; be a sequence of closed subspaces of H,

where [ is a finite or countable index set. ¢* ({K;},.;) is defined by

f2 ({’CZ}ZGI) = {{xi}iel T x; € ICZ', 1€ ]) Z H$1H2 < +OO} ,
el
with the inner product
{itier Avibier) = D (i y) -
el
Certainly, let’s begin with some preliminaries. Before diving into the de-

tails, let’s briefly recall the definition of a biframe:

Definition 2.1. [10] A pair (®,V) = ({®;},c;,{¥i},c;) in H is called a
biframe for H if there exist two constants 0 < A < B < oo such that

Azl <) (e, @) (T, ) < Bl|)?, for all 2 € H.
el
Theorem 2.2. [I| T € B(H) is an injective and closed range operator if and
only if there exists a constant ¢ > 0 such that c||z||* < [|Tz||?, for all z € H.

Definition 2.3. [15] Let H be a Hilbert space, and suppose that T € B(H)
has a closed range. Then there exists an operator 7' € B(H) for which

N(THY=R(T):, R(TH=NT), TT'z=z, z€R(T).
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We call the operator 7 the pseudo-inverse of 7. This operator is uniquely
determined by these properties. In fact, if 7 is invertible, then we have

T =T

Theorem 2.4. [7] Let H be a Hilbert space and Ti, T € B(H). The following
statements are equivalent:

(1) R(T) € R(Ts);

(2) TiT < AT for some A > 0;

(3) T = TaU for some U € B(H).

Lemma 2.5. [3] Let T : H — H be a linear operator, and assume that there
exist constants o, f € [0;1) such that |[Tx — x| < o||z|| + B|| Tz, for all

v € M. Then T € B(H), and
1 —a 1+«

i _
Tl =Tl < Tl < |[|T7%| <

1— 1+ 8
< —|l=ll,
15 1+

l—«o

|||, Vo € H.

3. K-BI-g-FRAMES IN HILBERT SPACES

In this section, we introduce the concept of a K-bi-g-frame and subse-
quently establish some of its properties. However, before proceeding, we first
define the notions of a g-frame and bi-g-frame in Hilbert spaces. Throughout
the remainder of this part (sections 3,4 and 5), we denote:

(@, 0) = ({@; : @ € B(H,Ki)}ier {1 Vs € B(H,Ki)} i)

Definition 3.1. [22] A sequence {®; € B(H,K,;)},.; is called a generalized
frame, or simply a g-frame, for H with respect to {I;},.; if there are two
positive constants A and B such that

Allz)? <) @)’ < Bllz|*, Vz e H.
jer
The constants A and B are called the lower and upper g-frame bounds,
respectively.

Definition 3.2. [18] A pair (P, V) of sequences is called a bi-g-frame for
H with respect to {K;};, if there exist two constants 0 < A < B < oo such
that

Allz|]® < Z<(I)Z'CE, U;z) < Bl|z||?, for all z € H.

el
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Definition 3.3. Let K € B(H). A pair (®, V) of sequences is called a
K-bi-g-frame for H with respect to {K;}.; , if there exist two constants
0 < A< B < oo such that

ANK*z|? <) (i, Uiz) < Blla|?, for all z € H.
el
The numbers A and B are called respectively the lower and upper bounds
for the K-bi-g-frames (®, V) g respectively. If K is equal to Zy, the identity
operator on H, then K-bi-g-frames is bi-g-frames.
Let (@, W) = ({®:};c;.{Vi};c;) be a bi-g-frame for . We define the bi-g-
frame operator Sg g as follows:

Sq),q/ H— 7‘[, S@,\p(l‘) = Z \I/:CI)Z:U

Definition 3.4. [17] Let C,C" € GL(H). The family
(I):{(I),EB(H,]CZ)ZGI}

will be called a (C, C’)-controlled g-frame for H, if ¢ is a g-Bessel sequence
and there exists constants A > 0 and B < oo such that

AlIfIP <) (@:Cf, ,C"f) < B|fII*, VfeH.

el

A and B will be called controlled frame bounds. If C' = I, we call & = {®;}
a C-controlled g-frame for H with bounds A and B.

Remark 3.5. According to Definition 3.3, the following statements are true
for a sequence ® = {®; : ®; € B(H,K,)},.; for H with respect to {/C;}_;:

(1) If (®,P) is a K-bi-g-frame for H, then ® is a K-g-frame for H.

(2) If (®,C®P) is a K-bi-g-frame for some C' € GL(H), then ® is a C-
controlled K-g-frame for H.

(3) If (C19,C2®) is a K-bi-g-frame for some C; and Cy in GL(H), then ®
is a (C1, Cy)-controlled K-g-frame for H.

Example 3.6. Let H = C* and {ey, 2, 3, e4} be an orthonormal basis for H
and Ky = Ky =span{e;}, 3 =span{es}, Ky = Span {es}. Define

K:H—>H by Kz=(xe)e.
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We consider two sequences, ® = {®;};_, and ¥ = {¥;}’ | defined as

follows:
Oy H — Ky, P12 = (x,e1) €1,
Oy 1 H — Ko, Do = (x,€1) €1,
O3 1 H — K3, D3z = 3 (x, e9) €3,
Gy H — Ky, gz =4 (x, e3) ey,
And

1
Uy H— Ky, Yz = B (x,e3) ey,

r €H,
xr e H,
r € H,
x € H.

r eH,
xr €H,

xr €H,

r € H.

Next, we establish that K*x = (x,e5) 1,2 € H. Indeed, for any x,y € H, we

obtain:

For © € H, we have S (D, Uiz) = 2|(z,e1)]” + [(z,ea)|* + |(z, e3)]*.

Hence, for every x € H, we have

2 2
K] = [[{z, e2) en

- ‘<x762>|2

< 2[(w, en)|” + (@, e2) | + |, ea) |

4
i=1

< 2|[|*.

Therefore, (®, V) is a K-bi-g-frame with bounds 1 and 2.



302 ROSSAFI AND KARARA

Definition 3.7. Let K € B(H). A pair (®, V) of sequences in H is said to
be a ¢ - tight K-bi-g-frame with bound A if

O K z|® = (®, Upa), for all w € H.
1€l
When 6 = 1, it is called a Parseval K-bi-g-frame.
Example 3.8. Let H = C* and {ey, e, e3,e4} be an orthonormal basis for

H, and K; = span{e;},Ky = span{es}, K5 = span{es}, s = span{es}.
Define

K:H—>H by Kz=(x,e)er+ (z,e2)er+ (z,e3)e3+ (x,e4) 4.

We consider two sequences, ® = {®;};_, and ¥ = {¥;}} | defined as fol-
lows:
Oy H — Ky, P12 = (x,e1) €1, reH,

Oyt H — Ko, Pox = 2(x,e9) €9, x € H,
O3 H — K3, P32 =3 (x,e3)e3, x€H,
)

@427‘[—>IC4,(I)45U:4<$,64 es, x € H.
And
Wy IH-)K:l,\I’lSU: <ﬂf,€1> €1, CL’GH,
1
@217‘[-)]C2,@2$:§<37,62>62, CL’GH,
1

@327‘[-)’63,\1’3$I§<33,63>63, CCEH,

Uy H— Ky, Uy = i(:p,e4>e4, r € H.
For x € ‘H we have,

Kz = (x,e1) e1 + (x,e9) €9 + (w,e3) e3 + (v,e4) €4, € H.

Indeed, for any =,y € H, we obtain:

(K*z,y) = (z, Km)

= (z, (y,e1) e1 + (y, e2) e2 + (y, €3) €3 + (y, €4) €4)
= (z, (y, e1) e1) + (z, (y, €2) e2) + (z, (y, e3) e3) +
= (z,e1) (y, 1) + (2, €9) (y, e2) + (x,e3) (y, e3) +
= + )+
= { Y

z,€1) (e1,y) + (z, e2) (€2, y) + (@, e3) (€3, y
(x,e1) e1 + (x,e9) ea + (x,e3) e3 + (z,€4) €4,Y) .



K — bi — g—FRAMES IN HILBERT SPACES 303

Also for z € H we have,
| K*z|)” = ||[(x,e1) e1 + (x, e2) €2 + (x, e3) €3 + (x, e4) e
= |(z, en) " + [(w, e2)[* + [{z, e5)” + | (, ea)|”

4
=1

Therefore, (P, V)x is a Parseval K-bi-g-frame for H.

Theorem 3.9. (®,V)x is a K-bi-g-frame if and only if
(‘117 (I))K = ({\Pz}yel ) {(I)i}iel)
is a K-bi-g-frame.
Proof. Let (®, V) be a K-bi-g-frame with bounds A and B. Then, for every
r eH,
A < S (@i, i) < B o]

1€l
Now, we can write

iel iel
= (Bix, V)
el
1€l
Therefore, A | K*z|* < Yot Wiz, @) < B |||” . This implies that, (¥, ®)x

is a K-bi-g-frame with bounds A and B. The reverse of this statement can
be proved similarly.. ]

Theorem 3.10. Let K\, Ky € B(H). If (®,V)k, is a K;j-bi-g-frame for
j € {1, 2} and a1, as are scalars, then the following holds:

(1) (@,V)k is a (a1 K1 + aaKy)-bi-g-frame.

(2) (®,V) g is a K1 Ks-bi-g-frame.

Proof. (1) Let (@, ¥)g, be a Kj-bi-g-frame for j = 1,2. For j = 1, there exist

J

two constants 0 < A < B < oo such that

AN Kzl <) (@i, Vix) < Bl|z|®, for all z € H.

el
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Similarly, for j = 2, there exist two constants 0 < C' < D < oo such that
C|Ksz|* <) (P, Uiz) < Djzf|?, forall 2 € H.
el
Now, we can write

2
(e K + oK) | < faa | [ K |* + oo | K|

< ol (% S (@i, xpm) +lasf? (é S (@i, xpm)

1el el

~(leal | agf? —
_( Y + 5 Z(CI)Zx,\IJZ:c).

It follows that

AC * 2
(C|oz1\2 +A|a2\2> |(an K1 + aoKo)" z||” < Z(Cbz‘l‘, U,z).
el

Hence, (@, V) satisfies the lower K-bi-g-frame condition. We have
> (@i, Wiz) < min{B, D}||z[|*, for all z € H.
1el

It follows that

AC * 2
K K
(cw T A|a2\2> (ks +aafz) o
< Z(@ix, U;2) < min{B, D}||z||>, for all x € H.
iel
Therefore, (@, V)x is a (a3 Ky + s Ks)-bi-g-frame.
(2) Now, for each x € H, we have

* 2 * 7% |12 %2 x 112
(K1 K) =" = [[KyKyof|” < (| K| [[Kyz)|™

Since (@, V) is a Ki-bi-g-frame, there exist two constants 0 < A < B < 0o
such that

AllKiz|” < Z(CIDZ-:L‘,\IJZ-:@ < B||z|?, forall z € H.
el
Therefore,
1
<112
eyl

. 2 . 1 B
I(KiKo) 2| < || Kjz|” < ZZ@%% Wiz) < =l

el
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This implies that

A
K37 (K 1K) ]| < Z(‘I)iil?, U;x) < Bljz||?, forall z € H.
2 i€l

Therefore, (®, V) is a Ky Ks-bi-g-frame for H. O

Corollary 3.11. Let n € N\{0,1} and K; € B(H) for j € [L;n]. If (,¥)x
is a Kj-bi-g-frame for j € [1;n] and oy, a0+ -+, oy, are non-zero scalars, then
the following holds:

(1) (®,¥)k is a (i a; K;)-bi-g-frame.
=1

j_
(2) (®,¥)k is a (K1 Ky --- K,,)-bi-g-frame.

Proof. (1)Suppose that n € N\ {0,1} and for every j € [1;n], (P,V)x is
a Kj-bi-g-frame. Then for each j € [1;n], there exist positive constants
0 < A; < B < oo such that

Aj IR 2)® <3 (@, Wix) < By, for all x € H.
el
Now, we can write

(i OéjKi> 9
j=1

= |on Kz + (Ko + - + an Kp) 2|
<l | Kiz|” + [[(aa ks + - - - + a K,) ||
<l K72 + -+ |an? | K]

2

n

el el
o |” ||
— < a1, +-0+ A, Z(@m, W;x)
el
_ zn: ‘O‘j|2 Z(@x \IJSC>
- A 1Y 7 .
j=1 J iel

Hence, (P, V) satisfies the lower frame condition. And we have

Z(@ix, U,z) < jé%%ﬁBj}HxH{ for all x € H.

1€l
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It follows that
2
— |a;|?
(s28) | (So) -
j=1

Hence, (®,V)k is a (Z a; K;)-bi-g-frame.

el

< min {B;}||z||?, for all z € H.
jeltin]

(2) Now, for each x E H, we have
(KK - Ko) el = (1K Kyl < |5 K5 | K

Since (P, V) is a K;-bi-g-frame, there exist two constants 0 < A1 < By < 00
such that

A | Kiz|? < Z(@ix, U;x) < By||z||?, for all x € H.

el
Therefore,
1 1 By 9
KKy K, Q,x, V) < — :
This implies that
A
- — S (F Ky Ky x| <) (@i, i) < Bylz?, for all @ € H.
[5G - - K il

Therefore, (¢, V)k is a (K1 Ky - - - K,,)-bi-g-frame for H.
L]

Theorem 3.12. Let K € B(H) with |K| > 1. Then every ordinary bi-g-
frame is a K-bi-g-frame for H with respect to {K;};.

Proof. Suppose that (®, V) is a bi-g-frame for H. Then there exist two
constants 0 < A < B < oo such that
Azl <) (@i, Uiz) < Bl|z|]®, for all = € H.
il
For K € B(H), we have |[K*z|* < ||K||?||z||%, for all z € H. Since || K| > 1,
we obtain W | K*z|)* < ||z||2, for all € H. Therefore,
A
(el

K 2|® < Alle))* <) (@, Uiz) < Blz|’, for all z € H.

el



K — bi — g—FRAMES IN HILBERT SPACES 307

Therefore, (¢, V)g is a K-bi-g-frame for H. O

Theorem 3.13. Let (P, V) be a bi-g-frame for H. Then (O, V) is a K-
bi-g-frame for H with respect to {K;},.; if and only if there exists A > 0 such
that Sp v > AKK*, where Sp.v is the bi-g-frame operator for (®,V)x

Proof. (®,V)g is a K-bi-g-frame for H with frame bounds A, B and bi-g-
frame operator Sg y if and only if

A K z|]* < (Spuw,z) = ) Ui, x) =Y (P, Uiz) < Ba|?, Vo € H,
el el

that is, (AKK*z,x) < (Sepwz,z) < (Bx,z), for all x € H. So the conclusion
holds. L]

Corollary 3.14. Let (®,V)x be a bi-g-frame for H. Then (®, V) is a tight
K-bi-g-frame for H with respect to {K;},c; if and only if there exists A > 0
such that Sp v = AKK*, where Sg g is the bi-g-frame operator for (®,V)x

Proof. The proof is evident; one can simply utilize the definition of a tight
K-bi-g-frame (see Definition 3.7).K [

Theorem 3.15. Let (P, \I!) be a bi-g-frame for H, with bi-g-frame operator
Sow such that S(%\I, = S(IQ)\I, Then (®,V)k is a K-bi-g-frame for H with
respect to {IC; },.; if and only if K = S(%\I,U, for some U € B(H).
Proof. Assume that (O, V) is a K- b1 g- frame By Theorem 3.13, there
exists A > 0 such that AKK* < S(%, \1/55\1/ Then, KK* < %S(%’\I,S%:‘I,.
So, KK* < )\255’\1,557\1,, where A = —= > 0. Therefore, by Theorem 2.4,
K = S(%’\I,U, for some U € B(H).

Conversely, assume K = Sc%,\I,W, for some W € B(H). Then by Theorem
2.4, there exists a positive number A such that KK* < )\QS(%)7\I,SC%;I,. Then,

pKK* < S%WS(%’\P, where = f > (). Since S(f,q, = S@\P, by Theorem 3.13,
(P, V) is a K-bi-g-frame for H. O]

el

S

4. OPERATORS ON K-BI-g-FRAME IN HILBERT SPACES

In the following proposition, we will require a necessary condition for the
operator 7 such that (&, V) will be a T-bi-g-frame for ‘H with respect to

{]Ci}iel'
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Proposition 4.1. Let (O, V) be a K-bi-g-frame for H with K € B(H). Let
T € B(H) with R(T) C R(K). Then (®,9)g is a T -bi-g-frame for H.

Proof. Suppose that (®, ¥) is a K-bi-g-frame for H. Then there are positive
constants 0 < A < B < oo such that
AllK x| < Z(Cbix, U;x) < Bllz||?, for all x € H.
el
Since R(T) C R(K), by Theorem 2.4, there exists & > 0 such that
TT* <a?KK*. Hence,

A .
pe) T < A K z|” < Z(Cbz‘lﬁ, U;z) < Bl|z||?, for all z € H.
1€l
Hence, (@, V)g is a T-bi-g-frame for H. O]

Theorem 4.2. Let (O, V) be a K-bi-g-frame for H with bi-g-frame operator
So.w and let T be a positive operator. Then

(P+TO,U+ TV, = ({(I)Z +TPiticr AV + T‘I’i}iel)
is a K-bi-g-frame.
Moreover, for any positive integer n, ({CI)Z +T"® ) {V + Tn‘I’z’}ig) is
a K-bi-g-frame for H.

Proof. Suppose that (®, V) is a K-bi-g-frame for 2. Then by Theorem 3.13,
there exists m > 0 such that S¢ ¢ > mK K*. For every x € H, we have

Sweronwirey = Y (Ui + TE)" (0 + T;)
el
=({I+T) ) Vo (I+T)
1€l
=T +T)Seu(I+T).

Hence, the frame operator for (& + 7,V +TV)x is (I +T) Sou(l +T).
Since 7T is positive operator we get,

(I + T)*SQJ,\I/([ + T) = S(I),\If + S@,q:T—i- T*Scp,\p + T*SQ’\I/T > Sq),q; > mKK”,

Once again, applying Theorem 3.13, we can conclude that (P47, UV+T V),
is a K-bi-g-frame for H.
Now, for any positive integer n, the frame operator for

Sy @irrey =T +T") Sow (I+T") > So.u.
Hence, ({®; + T"®;}c;, {¥; + T"V;},c;) is a K-bi-g-frame for H. O
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Theorem 4.3. Let K € B(H) and (®,V)x be a K-bi-g-frame for H with
respect to {K;},.;, and let M € B(H) be an operator with a closed range such
that MK = KM. If R(K*) C R(M), then

(M, UM )k = ({ @M} AWM }i))
is a K-bi-g-frame for H with respect to {IC;}

1el”
Proof. For every x € H, we have A ||K*z||* < 3, (®iz, U;z) < Bl|z|/%. Then
for M € B(H), we get
> (@M, UM x) < B|M*z|” < B|M|]*|z|*
1€l
Since M has a closed range and R (K*) C R(M),
|Kal* = || MM K|

_ (MT)*M*K*LE ‘2

_ (MT)*K*M*x ‘2

IA

2 * *
MY || KMz
On the other hand, we have
S (@M e, UM x) > A KM x| > Al MY K )
el
Hence, (PM*, WM*)g is a K-bi-g-frame for H with respect to {K;},.,;. O

Theorem 4.4. Let K, M € B(H) and (®,V)x be a 0-tight K-bi-g-frame
for H with respect to {K;},.;. If R(K*) = H and MK = KM, then
(OM* UM*) g = ({@:M*},cp, {¥:M*},.;) is a K-bi-g-frame for H with re-
spect to {K;},c; if and only if M is surjective.
Proof. Suppose that ({®;M*},.;,{¥;M*},.;) is a K-bi-g-frame for H with
respect to {K;},.; with frame bounds A and B. That is, for every € H,
ANK || <Y (®:M*z, U;M*z) < Blz|*

il

and we have
0Kzl =) (®ia, Uyz), for all x € H.

el

Since K*M* = M*K*, we obtain
8| MK z|)* = & || K*M*a||” = 3, (@ M*a, W; M*x).
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1 A
Hence, || M*K*z||> = gzid(@iM*x, U, M*z) > 5 |K*2||*. From which we

conclude that M* is injective. Since R (K*) = H, M is surjective as a
consequence. [

5. STABILITY OF K-BI-g-FRAMES FOR HILBERT SPACES

Theorem 5.1. Suppose that K € B(H) and K has closed range. Let
O ={P; : &, € B(H,Ki)}iep and ¥ = {V; : U, € B(H,K))}ep be two g-
Bessel sequences with bounds Be and By respectively. Assume that (O, V)g
is a K-bi-g-frame for H with respect to {IK;},.; with bounds A and B, and
let ({ANi}icr . {Ditic;) be a pair of sequences in B(H,K;) fori € I. If there
exist constants o, 5,y € [0,1) such that max{a +~,} <1 and
13 iy (U7 — TN || < @ | Xy Ui @i || + B || ey TiNize ||+ 1]

where J is any finite subset of I and HSE}\I,IH < ||z||, where S¢w is the bi-g-
frame operator of (®,¥)g. Then ({A;},c;.{Ti}ic;) is a K-bi-g-frame for H
with respect to {IC;},o; with bounds

All=(e+)] (+a)vBaByty
(1+6) 1-p

Proof. Suppose that J C I,|J| < +oo. For any = € ‘H, we have

> Tiha > (TN = o) || + || Ui
i€ ieJ ieJ
< (Lta) Y Ul + 8| i)+l
ieJ ieJ
Then ||¥,c, Tidiz|| < 12 HZZEJ Uiz + 2 125 llz|| - Since
Z\I/ ®;x|| = sup <Z\Pf®2x,y>'
ieJ =]\ e
= sup <Z@z$,‘1’zy>|
lyll=1 icJ

N

3
2
< (D l@l® | sup (D [Ty
icJ 11=1 \ e
< v/ BoBy ||z
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Hence, for all x € H, we have

1 \/Bs B
> Tih * o) vBaBe
ieJ 1_6

(1+a)vBsBy +7
1-p

<! el

y
Il + =5 ll=ll =

We considere

M:H—=H, Mz=) Tj\zzecH

ieJ

Then M is well-defined, bounded, and M| < 1+ i ?;B“Jﬂ. For every
x € H, we have

(Maz,z) = () TiAw,z) =Y (A, Tix) < [M]|z]*. (5.1)

ieJ ieJ

It implies that ({Ai}ie ;+{Li};e;) is a bi-g-Bessel sequence for H with respect
to {Ki},c;- Let Sow be the bi-g-frame operator of (®, ¥)x. According to the
theorem hypothesis, we obtain

1(Sa,0 = M)z|| < af|Spwz|| + Bl Mz|| + 7|z, Vo € H.
Then,
lz — MSg || < allel] + 8| MSg ]| + 71155 ]
< (a+9) |z + 8| MSg ]| -

Since 0 < max {« + 7, 5} < 1, According to Lemma 2.5 | we get

—— < ||Sp.g M < —
1+(oz+’y)_H o H_l—(omL’y)
Since ’|S¢)’\IJ|| = HSQ,\I:M_l./\/lH < HSq),\pM_luHMH Therefore,
A 1—(a+7)]
M| > KK*||> A KK*| . 5.2
M| = (52 e V] | KK || > 117 [ KK (5.2)
Hence, by Theorem 3.13, we can conclude that ({A;},.;,{I},c;) is a K-bi-
g-frame for H with respect to {IC;},;. O

Corollary 5.2. Suppose that K € B(H) and K has closed range. Let
O ={P; : &, € B(H,Ki)} iy and ¥ = {V; : U, € B(H,K;)}ep be two g-
Bessel sequences with bounds Bg, By respectively. Assume that (O, WV)g is
a K-bi-g-frame for H with respect to {K;},.; with bounds A and B, and
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({Ai}icr {Di}ie;) is a pair of sequences for H with respect to {K;}
there exists a constant 0 < D < A such that

D> (Ud; —TiA) x

1€l

i€l

< D|K"z|, VxeH,

and HS(g’lq,:cH < ||z||, where Sg v is the bi-g-frame operator of (®,V)k, then
({Aitier s {Fi}id) is a K -bi-g-frame for H with respect to { K;},.; with bounds

A (1 _ Dﬁ) and (\/MJFD\/%.

1
Proof. For any x € H, we have ||[K*z| < NZ (X e/ (Pix, Uiz))

N[

. Then

> (TP —TiA) =

el

< D||K"z]

< L (Z@ z \Ilﬂ:)) E

el

<Dy Z .

B
By letting o, 5 = 0,7 = D“Z in Theorem 5.1, ({Ai}id,{ri}m) is a K-

B
bi-g-frame for H with respect to {K;},.; with bounds A (1 - D Z) and

(mﬂyﬁ). .

Theorem 5.3. Suppose that K € B(H) and K has closed range. Let
O ={P,: D, € B(H,K))};ep and ¥ = {¥; : U; € B(H,K;)},o; be two g-Bessel
sequences with bounds Bg and By, respectively. Assume that (®, V) is a
K-bi-g-frame for H with respect to {IC;},.; with bounds A and B, and let
({Ai}icr - {Di}ie;) be a pair of sequences for H with respect to {/C}

there exist constants «, 3,y € [0,1) such that max {a + Z?B} <1 and

> Urd > Tih

ieJ 1€

1€l

> (Ui —TiA) 2

1€J

<

+ 0 +y K7z, (5.3)
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where J is any finite subset of I and HS(I_,}\I,:EH < ||z||, where S¢y is the bi-g-

frame operator of (O, V), then ({Ai}iel7{ri}i61) is a K-bi-g-frame for H
with respect to {IC;};o; with bounds

1-— <04+7\/§) {(1+a)m+7\/§}
A 1+ ’ 1-p '

Proof. For any x € ‘H, we have

I < = (Z@ix,w) < @Hxn. (5.4)

el
+ 7/ Tl

Therefore, the remaining part of the proof is similar to the proof of Theorem
5.1. ]

Then, the hypothesis 5.3 is equivalent to:

> rd

=i

> (Ui —TiA) 2

1€

<a + 3

i€

Theorem 5.4. Suppose that K € B(H) and K has closed range. Let
¢ ={®, : & € B(H,Ki)};e; and ¥ = {¥; : U, € B(H,K;)},.; be two g-
Bessel sequences with bounds Bg, By respectively. Assume that (®,V)g
is a K-bi-g-frame for H with respect to {K;};.; with bounds A and B and
({Ai}ier - {Di}ie;) be a pair of sequences for H with respect to {K;};;. If there

| B
exist constants «, 8,0,7 € [0,1) such that max {cx +o+v e ﬁ} <1 and

> (¥ —TiA) x| <a +6 ozl +y 157,

1€

> b

i€

1€J

(5.5)
where J is any finite subset of I and HS<£,1\11$H < ||z||, where S¢w is the bi-g-

frame operator of (®,¥)k. Then ({A;},c;.{Ti}ic;) is a K-bi-g-frame for H

with respect to {IC;},c; with bounds
B
{(14-0&)\/3@3\1/4-0-1—7 Z

(o2

(1+5) ’ 1-p

A
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Proof. With the inequality 5.4, our hypothesis 5.5 will be equivalent to

B
> (Ui —TiA) z|| S af| ) Urd|[+8||) TiAz||+ a+m/Z .

1eJ 1eJ 1eJ
(5.6)
Therefore, the remaining part of the proof is similar to the proof of Theorem
5.1. ]
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