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GENERALIZED LUCAS PRIMES IN THE FERMAT-EULER EQUATION
H. R. Hashim

ABSTRACT. The property of having infinitely many prime numbers award these num-
bers to have many applications in various fields of sciences. One of the most important
applications is their use in the creation of many public key cryptosystems’ private
keys. Therefore, the main aim of this paper is considering a well known form of primes
generated by the Fermat-Euler equation p = 22 4+ dy? and studying whether or not
this form keeps the property of generating infinitely many primes if the unknowns =z,
y and p are terms in certain binary recurrence sequences called the Lucas sequences
of the first kind {u,(a,b)} or the second kind {v,,(a,b)}. In other words, in this paper
we present a technique for investigating the integer solutions (z,y,p) of the equation
p = 22 +dy?, where the unknowns are terms in {uy, (a,b)} or {v,(a,b)}. We also apply
this technique for determining the solutions (x,y,p) = (t;(a,b),t;(a,b),tx(a,b)) with
1 <i < j <k, where t,(a,b) represents the general term u,(a,b) or v,(a,b) under
certain conditions on the integers a and b.

1. INTRODUCTION
The problem of determining prime numbers in the form
p =1+ dy’ (1.1)

for a given positive integer d, where x,y € Z, has been in interest to many
mathematicians. This problem dates back at least to Fermat (see e.g. [3])
who firstly conjectured the following problems concerning prime numbers of
the form (1.1) in case of d = 1,2,3 and 4, respectively:

p=2?+y* ifand only if p= 1 (mod4) or p=2, (1.2)
p=212>+2y* ifand only if p= 1,3 (mod 8) or p=2, (1.3)
p=2?+3y* ifandonlyif p= 1 (mod3) or p=3, (1.4)

and
p=2?+4y* ifand only if p= 1 (mod 4), (1.5)

for some integers x and y. These above conjectures were studied deeply and
proved by Euler who publish it in his Latin paper [1] (for more details, see
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e.g. [3]). However, for d > 5 Euler was unable to give a proof, but he could
give conjectures for the cases of d = 5, 6; that are

p=212+5y* ifand only if p= 1,9 (mod 20), (1.6)
p=212%+6y* ifand only if p= 1,7 (mod 24), (1.7)

for some integers x and y. These latter two conjectures were proved by Cox
[3] who completely solved the general problem of determining the primes of
the form (1.1) with d > 4 using some techniques from class field theory. More
precisely, he proved the following result: if ged(p,d) = 1 and O = Z[/—n]
denotes the order in the field K = Q[v/—n], then 2?+dy? = p iff the Legendre
symbol (%) = 1 and g,(z) = 0 (mod p) is solvable over integers, where
gn(z) € Z[X] is the minimal polynomial of a real algebraic integer that
generates Kp over K.

In fact, these above results (Euler’s result and Cox’s result) are very useful
and important since they tell us that the number of the prime numbers of the
form (1.1) is infinite for any given positive integer d, and the study of prime
numbers has been in interest to many scientists for its use and applications
in various areas of sciences. On of the most important applications of prime
numbers is their use in forming public key cryptosystems’ private keys such as
RSA, ELGamal and Elliptic curve cryptosystems. Note that such equations
of the form (1.1) are known as a type of Diophantine equations.

However, it is well known that the number of primes in integers is infinite, it
is also proved that there are infinitely many primes in certain types of binary
linear recurrence sequences such as the Lucas sequences of the first kind or
the second kind whose general terms are respectively denoted by w,(a,b) or
vn(a,b), which are defined by the relations (see e.g. [9]):

up(a,b) = 0,u1(a,b) =1, wuy(a,b) = au,_1(a,b) — bu,_o(a,b), (1.8)
vo(a,b) = 2,v1(a,b) = a, wvy(a,b) =av,_1(a,b) — bv,_s(a,b), (1.9)
where n > 2 and the integers a and b are nonzero with gcd(a,b) = 1. In fact,
both of these sequences are called by the Lucas sequences and their terms

(called generalized Lucas numbers) can be also obtained by what are so called
Binet’s formulas:

g5 — AN
up(a,b) = 7

0 —

and wv,(a,b) = 0" +~", (1.10)
with n > 0 and

J

(1.11)

a-++vVa?2—4b a—Va?—4b
= 5 and v = 5



GENERALIZED LUCAS PRIMES 319

represent the zeros of the following characteristic polynomial of these
sequences:

X2—aX+b=0.

|

Note that ¢ is known as the golden ratio and ~ = For certain val-
ues of a and b, we get some well known sequences that have been investi-
gated by a various number of mathematicians. If (a,b) = (1,—1) then the
Lucas sequences respectively give the sequences of Fibonacci numbers
{un(1,-1)} = {F,} and Lucas numbers {v,(1,—-1)} = {L,}. Also, if
(a,b) = (1,—2), that leads to the Jacobsthal sequence {u,(1,—2)} = {J,}
and Jacobsthal-Lucas sequence {v,(1,—2)} = {j,}. On the other hand, in
case of (a,b) = (2,—1) we get the Pell seqence {P,} = {u,(2,—1)} and
Pell-Lucas sequence {Q,,} = {v,(2,—1)}.

Since the infiniteness property of the prime numbers is what makes them
very useful to be used in cryptography, one may ask whether or not this
property stays true if these primes (particularly, of the form (1.1)) are derived
from certain linear recurrence sequences, e.g. the Lucas sequences defined by
the relations (1.8) or (1.9). Such a problem was studied partially by Athab
and Hashim [!] in which they determined the primes of the form (1.1) in
case of the unknowns are terms in Lucas sequences and d = 1 (namely, the
equation of the form (1.2)) with (a,b) € {(1,-1),(2,—-1),(3,—1),(3,1)}. In
this paper, we extend this result by presenting a technique for studying the
integer solutions

(xayap) S {(ui(aub)?uj(a?b)auk(CL?b))? (Ui(aﬂb)ﬂvj(mb)?wf(a?b))}

with 7, j,k > 1 of equation (1.1) for any given integer d > 2 and any pair of
nonzero integers (a,b) such that a > 2, —a—1<b<a—1 and a* — 4b > 0.
Note that we here exclude the case with a = 1 and d = 1 as it was partially
studied in [1] and in order of having a simpler presentation. It is important to
remark that in our study, we only focus on the nondegenerate Lucas sequences
that is defined as follows: the Lucas sequence at the nonzero parameters a
and b is called nondegenerate iff if § /7 is not a root of unity, and otherwise it is
called degenerate. Thus, it is nondegenerate only if (a,b) ¢ {(£1,1), (£2,1)},
see e.g. [3]. In fact, investigating the solutions of certain types of Diophantine
equations in some Lucas sequences has been in interest to many authors, see

e.g. [5], [0] and [7].
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2. AUXILIARY RESULTS

Here, we introduce some previous results which are used latter in the proof
of our main results. Firstly, we present the following two lemmas due to the
result of Tengely, Szalay and Hashim in [5]:

Lemma 2.1. If a and b are nonzero integers with a > 2,
ged(a,b) =1, —a—-1<b<a-1
and a®> — 4b > 0, then the Lucas sequences satisfy the following:
6" % < up(a, b) < 20", (2.1)
20" < v,(a,b) < 25" (2.2)
forn > 1.

Lemma 2.2. Let a and b be nonzero integers such that ged(a,b) = 1 with
a>2, —a—1<b<a—1anda®—4b> 0, then the roots of the characteristic
polynomial of Lucas sequences (i.e. § and ~y that are defined in (1.11)) satisfy
the following inequalities:

0>2 and |y| < 1.

Furthermore, the general terms of Lucas sequences are connected in an
identity given in the following lemma (see e.g. [3]):

Lemma 2.3. Suppose that ¢ = a®> — 4b such that the integers a and b are
nonzero with ged(a,b) = 1, then the following identity holds for all n > 0:

v2(a,b) = cu’(a,b) + 4b". (2.3)
3. MAIN APPROACH

Here, we present a technique for determining the solutions

(377 Y, p) - (ti(aa b)? tj (CL, b)? tk(av b))

with 4,7,k > 1 of equation (1.1), where t,(a,b) represents the general term
of either the nondegenerate Lucas sequence of the first kind or the second
kind at the nonzero relatively prime parameters a and b with which a > 2,
—a—1<b<a—1anda?—4b > 0. For simplicity, we denote the term ¢, (a, b)
by t,, and similar idea goes to the general terms of Lucas sequences, i.e. we
denote u,(a,b) by u, and v,(a,b) by v,. So, our technique can be used to
obtain complete set of the solution (i, j, k) with 4, 7,k > 1 in any equation of
the form

ty =t; + dt; (3.1)
for any given positive integer d, where t,, = u,, or v,.
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Remark 3.1. Note that it is easy to see that the latter equation is satisfied
only with ¢ < k£ and j < k. So in order to obtain all the values of 7,5 and k
(with 4, 7, k > 1) with which equation (3.1) holds, we only need to obtain such
values with ¢ < 7 and j < 7. Indeed, to make the presentation simpler we
only solve the equation with 1 <14 < j < k, and the other (i.e. 1 < j <i<k)
will be achieved similarly. Then, merging the solutions for both cases will
give the complete set of solutions. In other words, without loss of generality
and in order to have a simpler presentation, in this paper we only consider
the former case.

Indeed, our technique mainly depends on the following arguments:

(I) Obtaining an upper bound for i in equation (3.1). That would be by
substituting the Binet’s formulas of Lucas sequences given in (1.10) and their
related inequalities given in (2.1) or (2.2) with the help of (2.2). Indeed, we
get after some simplifications an upper bound for 7, we may call it by L, i.e
i < L.

(II) For each i, we obtain the values of j and k as follows:

e Substituting each 7 in equation (3.1) to get the equation
t=dt; + g, (3.2)

where g = t7.
e Next, by substituting the latter equation in the identity (2.3) (where
tr = uy or vx) we get the elliptic curve equation

VE=AX!+B X+, (3.3)

where X; = u; or v; and the coefficients depend on the values of d, g, c
and 0". Note that we ignore the corresponding values of Y; since we are
mainly interested in determining the j values which correspond to the
values of X; = u; or v;. In fact, the values of X; can be determined
by the algorithm SIntegralljunggrenPoints() that’s implemented
in Magma software [2]. Thus, for each value of X7, the corresponding
value of j is obtained.

e By substituting each value of j in (3.2), we obtain the corresponding
value of k. Hence, with this step we obtain the values of 7, 7 and k£ with
i < j < k with which equation (3.1) holds. Namely, we obtain all the
solutions (i, 7, k) of equation (3.1) with ¢ < j < k.
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4. MAIN RESULTS AND APPLICATIONS

Here, we first give a result related to the upper bound of ¢ in equation (3.1)
as mentioned in argument (I) of the main approach Section. Then, we apply
the second argument (i.e. (II)) in solving (3.1) with certain pair of parameters
a and b and some positive integer d. Without loss of generality and in order
to make the presentation of our result simpler, here we first assume that
b = +1. Moreover, in order to get a clear and an uncomplicated formula
for the upper bounds of 7 we also assume that k£ > 25 + i — 5. Summing
everything up, our main results and their applications are obtained in case
ofa>2,b=41,2<d<10and k>2j+:i—>5withl1 <1< j <k

Theorem 4.1. Let a and b be nonzero integers with a > 2, b = +£1 and
a? —4b > 0. If (z,y,p) = (us,uj,ux) or (vi,vj,vg) with 1 < i <j <k and
k> 2j+1i—5is a solution of equation (1.1) in case of d < 10, then

i < {%J, (4.1)

where § — tYa’—4b
5 )

Proof. In order to prove this theorem, we firstly consider in detail the case
of the triples (z,y,p) = (u;, uj, ux) and the other (ie. (x,y,p) = (vi, v}, vx))
can be achieved similarly.

More precisely, if we substitute the triple (z,y, p) = (u;, u;, ux) in equation
(1.1), we obtain the equation

w, = uF + du?, (4.2)
where 1 <1 < j < k. Since d < 10, we get that
up = ui + du? <ui+ 10u?.

Next, we divide the latter inequality by u; as it is greater than zero we obtain

that
2

< By 10u,. (4.3)

Uj uj

As j > i, inequality (4.3) becomes < wu; 4- 10u;, that can be rewritten as
J
ur < uj(u; + 10u;). (4.4)

By substituting the Binet’s formula of the Lucas sequence {u,} given in (1.10)
in some of the terms of inequality (4.4), we get that

0 =~ < (6 = 47) (u; + 10uy),
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or

6% < (67 — A7) (u; + 10u;) + +*. (4.5)
Taking the absolute value to inequality (4.5) with the use of inequality (2.1)
implies that [60%] < |(67 — ~7)(20" + 2087) + ~*|, which can be simplified as
follows:

6% < 267 4 206% — 29767 — 208747 + ~*|.

Since || = \§| = || with using the assumptions that ¢ < j and —k < —i,
we obtain that [0%| < [|446%| + [07%|. After some simplifications, the lat-
ter inequality can be written as |§'| < #. Since we have assumed that

k> 2j+i—5, then |§| < % < 456° as § > 2 by Lemma 2.2. Therefore,

. In(456°)
< )
In(6)
Similarly, as done in the previous case we plug the triple (z,y, p) = (vi, vj, vg)
in equation (1.1) to get the equation

vp = V7 + dvjz, (4.7)
where 1 <17 < j < k and d < 10. Similarly, by dividing the latter inequality
by v; with substituting the Binet’s formula of {v,} in vj/v;, we again get that
6F < (67 — 49 (v; + 10v;) + v*. Without repeating the detail of computations
that are done on inequality (4.5) we get, by taking the absolute value to the

above inequality with the use of inequality (2.2) and the assumptions of i < j,
—k < —tand k > 25 41— 5, that

(4.6)

. In(456°)
< |—]. 4.8
- L In(0) J (48)
Hence, the upper bound of i obtained in (4.6) or (4.8) proves the result of
Theorem 4.1. ]

The following corollary is an application of Theorem 4.1 for showing the
upper bounds of 7 in equations (4.2) and (4.7) with any positive integer d in
case of the Lucas sequences are nondegenerate with 2 < a < 10 and b = £1.
Suppose that the upper of i that is given in (4.6) or (4.8) is denoted by L.

Corollary 4.2. If the sequences {u,} and {v,} are nondegenerate with
2 <a <10 and b = 1, then the upper bounds of i (call it by L), in which
the equations (4.2) and (4.7) (with any integer 2 < d < 10) are satisfied, are
given as follows:
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Table 1: Upper bounds for ¢

(a,b) | L | (a,b) | L
2,-1) [10] 3,1) |8
3,1 |8 | (417
4,-1) | 7] (5,1) |7
(5,—1) | 7] (6,1) |7
6,-1) | 7] (7,1 |6
(7,-1) | 6 | (8,1) |6
8,—1) 6] (9,1) 6
©,-1) | 6]10,1)]6
(10,-1)|6 | — |-

Without loss of generality and by following the results of Theorem 4.1
and Corollary 4.2, we determine the set of the triples (z,y,p) = (u;, uj, ug)
or (vj,v;,v;) satisfying equation (1.1) under some conditions on the indices
with certain values of a and b given in Table 1 and all the values of d such
that 2 < d < 10. More precisely, in the following we give results for the
solutions of equation (1.1) for some cases e.g. (a,b) = (2,—1) and (3, —1),
and the idea can be applied similarly for any values of a and b with a > 2,
—a—1<b<a—-1anda®—4b> 0.

Theorem 4.3. If x = P,y = Pj,p= P, with1 <i<j <k and2 <d <10,
then the complete set of solutions (x,y,p,d) to equation (1.1) is given by

(z,y,p,d) € {(1,1,5,4),(1,2,29,7)}.

Proof. Since {P, } = {u,(2,—1)}, then from Table 1 we see the upper bound
of 7 is 10. Let’s first consider d = 2 and then search for the solutions of
equation (1.1) with x = P,y = Pj,p = Py such that 1 < i < j < k
(since the upper bounds in Table 1 are computed under the condition that
k > 2j 4+ i — 5, so this condition is fixed while determining the solutions);
namely we investigate the values of 7, j and k satisfying the following equation:

2 2
P, = P? +2P%. (4.9)

Now, by applying Argument (I) of the main approach Section in which we
substitute each of i € {1,2,...,10} in equation (4.9) in order to obtain elliptic
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curves of the form (3.3), particularly curves of the form

where X; = P;. Indeed, Table 2 gives a summary to the computations of
obtaining these curves (i.e. curves of the form Y? = A1 X{ + B, X? + C}) and
their solutions (particularly, the positive z coordinate as X; = P;, and note
that the empty set {} means the corresponding elliptic curve has no positive
x coordinate in its solutions) for each of the value of 7 € {1,2,...,10}.

Y1 =8(dX7 + P7)* £ 4,

Table 2: Elliptic curves and their solutions in
{P,} with d =2

i [A1, By, C1] {(X1,7)}
1 32,32, 4] 0
32,32, 12] 0
2 (32,128, 124] 0

(32,128, 132] ((2,2)}
3 132, 800, 4996) 0
132, 800, 5004] 0
1 132, 4608, 165834] 0
132, 4608, 165892] 0
5 132, 26912, 5658244] 0
132, 26912, 5658252] 0
6 32, 156800, 192079996] 0
132, 156800, 192080004] 0
7 (32, 913952, 6525845764] 0
132, 913952, 6525845772] 0
8 | [32,5326848, 221682106364] 0
132, 5326848, 221682106372] 0
9 | [32, 31047200, 7530692404996] 0
[32, 31047200, 7530692405004 {}
10 | [32, 180956288, 255821704427644] {}
[32, 180956288, 255821704427652] {}
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From Table 2, we see that the right hand side of equation (4.9) is satisfied only
in case of i = 2 and j = 2. Hence, these imply that P, = PZ+2P} = 12 = P;,
but this is not a prime number. So, we exclude this solution. Therefore,
we conclude that equation (1.1) has no solution in the integers © = P,
y = P;,p= P such that 1 <1 < j <k in case of d = 2. In fact, by following
the same approach, same conclusion can be gotten with d = 3,5,6,8 and 10.
Hence, we omit the details of computations for determining the corresponding
elliptic curves and their solutions.

Next, we determine the solutions of equation (1.1) where d = 4, namely we
determine the triples (i, j,k) with 1 <i < j < k and k > 25 + ¢ — 5 of the
equation

P, = P} +4P7. (4.10)
The latter equation can be indeed rewritten as follows:
p=X"+Y? (4.11)

where (X,Y,p) = (F;,2P;, P;) In fact, this equation was studied in [1], and
its set of solutions in the sequence of Pell numbers is given by

(Xa Y,p) - (Pu Pjv Pk) S {(17 L, 2): (17 2, 5): (27 9, 29)}7

where 1 <7 < j < k. Now, we examine which of these solutions of equation
(4.11) also satisfies equation (4.10). The first solution (X,Y,p) = (1,1,2) is
ignored since here we have that Y = 1, and there is no Pell number satisfies
2P; =Y = 1. From the solution (1,2,5), we have that 2P; = Y = 2 which
gives j = 1. Hence, we obtain that (7,j,k) = (1,1,3) in which equation
(4.10) is satisfied with the conditions of 1 < i < j < k and k > 25 + i — 5.
That means we get that (x,y,p,d) = (1,1,5,4) as a solution to equation
(1.1). Finally, we consider the solution (X,Y,p) = (po,p3,p5) = (2,5,29)
of equation (4.11). On the other hand, the solution of equation (4.10) are
obtained only with having 2P; = Y = p3 = 5 which is impossible. Thus,
this solution is also excluded. Note that by following the same approach with
having d = 9, we obtain no solution to equation (1.1). So, we again omit the
details of computations.

Finally, it remains to investigate the solutions of equation (1.1) with
d = 7, and that can be achieved by determining the values of ¢, 7, k, with
1<i<j<kandk>25+i—5,in which the following equation holds:

_ p2 2
P, = P2+ 7P (4.12)
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By following the exact approach applied earlier with d = 2, we firstly form
elliptic curves of the form Y? = A; X{ + B1X? + C for each value of i with
1 <17 < 10. In fact, only in case of « = 1 we get an elliptic curve that have a
positive x-coordinate in its solutions. In other words, with + = 1 we have the
elliptic curves

VP = 392X] + 112X7 + 4,
VP = 392X] + 112X7 + 12,

where X; = P;. We solve the above curves by the Magma algorithm
SIntegralljunggrenPoints(), and then we only get X; = 2 as a posi-
tive x-coordinate of the solutions of the former equation. But, the latter
equation has no integer solutions. Therefore, 2 = X; = P; implies that
j = 2. Finally, substituting i = 1 and j = 2 in equation (4.12) gives that
P, = P+7P} = 12+7(2%) = 29 which gives k = 5. Thus, we have the triples
(2,7, k) = (1,2,5) with which equation (4.12) is held. Indeed, this triple with
d =T leads to (z,y,p,d) = (1,2,29,7) which is the final claimed solution of
equation (1.1). Hence, Theorem 4.3 is completely proved. [

Theorem 4.4. The Diophantine equation (1.1) with 2 < d < 10 has no
solution in the integers x,y and p if (x,y,p) = (vi(3, —1),v;(3, —1), vx(3, —1))
with1<i<j < k.

Proof. In order to achieve the proof, we follow the same strategies applied in
the proof of Theorem 4.3 with less details. So, we now need to solve equation
(1.1) in case of (z,y,p) = (vi(3,—1),v;(3, 1), vx(3,—1)) with 2 < d < 10
and 1 <7 < j < k under the condition of £ > 27 4+ ¢ — 5. Namely, we solve
the following equation completely:

ur(3, —1) = vi(3, —1)* + dv;(3, —1)°. (4.13)

From Table 1, we have i < 8. As done in the proof of the previous theorem,
we apply Argument (I) of the main approach Section in which we substitute
each of i € {1,2,...,8} in equation (4.13). Then we substitute the obtained
equation in identity (3.1) to get elliptic curves of the form

Vi = 13[(dX, 2 + vi(3,—1)%)? £ 4], (4.14)
where X; = v;(3,—1) and 2 < d < 10. After some simplifications, let’s as-
sume that the latter curve is written in the form Y? = A1 X} + B X? + C).
The next step is for each d € {2,3,...,10}, we determine the

corresponding elliptic curves for every i € {1,2,...,8}. In fact, the integral
points on these curves are obtained wusing the Magma algorithm
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SIntegralLjunggrenPoints (). In fact, without loss of generality and re-
peating the strategy (as done in the proof of the previous theorem) of ob-
taining the elliptic curves and their solutions, in the following we only deal
in details with the case of d = 3. The other cases are handled similarly.
The following table summarizes the computations of calculating the ellip-
tic curves’ coefficients (i.e. curves of the form (4.14) with d = 3) and the
x— coordinates of their solutions in which X; = v;(3, —1):

Table 3: Elliptic curves and their solutions in
{v,(3,—1)} with d =3

i [A1, By, C1] {(X1,7)}
1 117,702, 1105] ((3,1)})
117,702, 1001] 0
2 117, 9438, 190385) 0
117, 9438, 190281] 0
3 [117,101088, 21835060] {}
117, 101088, 21834956 0
1 117, 1104558, 2606940921] 0
[117,1104558, 2606941025 {}
5 (117, 12047022, 310108416865] 0
117, 12047022, 310108416761] 0
6 [117,131414712,36901338739460) {}
[117,131414712, 36901338739356] {}
71 [117,1433512782,4390937812302041] {}
[117,1433512782,4390937812302145] {}
8 | [117,15637227918, 522484822562988545] {}
117, 15637227918, 522484822562088441] | {}

From the above table, we only get a positive solution to the elliptic curve
V) = 117X," + 702X, + 1105,

that is given by (Xi,Y1) = (3,130) in the case of i = 1. We only con-
sider the value of X; = 3 since 3 = X; = v;(3,—1), and this gives j = 1.
By substituting i = j = 1 with d = 3 in equation (4.13), we obtain that
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vE(3,—1) = 94 3(9) = 36 or k = 3. But 36 is not a prime number, so we
ignore this solution. Similarly, one can easily show that the equation (4.13)
is again not solvable in case of the other values of d, so we omit the detail of
computations. Thus, Theorem 4.4 is proved. [

Remark 4.5. By following the same approach used in the proof of Theorems
4.3 and 4.4, one can completely solve equation (1.1) with any positive value
of d and (x,y,p) = (vi(a,b),v;(a,b),vi(a,b)) such that 1 <i < j <k, a> 2,
—a—1<b<a—1anda®—4b > 0. However, from the results of Theorem 4.1
and Corollary 4.2 and by following the result of Theorem 4.4 we conjecture
the following result:

Conjecture 1. The Diophantine equation (1.1) with 2 < d < 10 has no
solution in the integers z,y and p if z = v;(a,b), 2 = v;(a,b) and p = vi(a, b)
with 1 < ¢ < 7 < k and all pairs of (a,b) given in Table 1 (including
(a,b) = (3,—1), that is already considered in Theorem 4.4).
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