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THE PARTITION DIMENSION AND i-DOMINATION NUMBER OF
TWO SPECIFIC GRAPHS

A. Zafari* and S. Alikhani

ABSTRACT. For an ordered k-partition Q = {5, 55, ..., Sk} of vertex set of a con-
nected graph G and a vertex v of G, the representation of v with respect to 2 is
defined as the k-tuple r(v|Q) = (d(v,S1),d(v, S2),...,d(v, S)). The partition Q is
called a resolving partition of G, if r(u|Q) # r(v|Q2) for all distinct u,v € V(G). The
partition dimension of a graph G, denoted by pd(G), is the cardinality of a minimum
resolving partition of G. A subset D C V(@) is k-dominating in G, if every vertex
of V(G) \ D has at least k neighbors in D. The minimum cardinality among all
k-dominating sets is called the k-domination number of G, denoted by 74 (G). In this
paper, we determine the partition dimension of cocktail party graph CP(m + 1) and
corona product G o K,,. Moreover, we obtain k-domination numbers for CP(m + 1)
and corona product C,, o K,,.

1. INTRODUCTION

Given a set of vertices S = {vy,...,v;} of a connected simple graph G,
the metric representation of a vertex v of G with respect to S is the vector
r(v|S) = (d(v,v1),...,d(v,vx)), where d(v,v;), i € {1,...,k} denotes the dis-
tance between v and v;. The set S is a resolving set of G, if for every pair
of vertices u,v of V(G), r(u|S) # r(v|S). The metric dimension dim(G) of
GG is the minimum cardinality of any resolving set of G. This parameter has
studied well in literature.

One of the useful concepts in graph theory is determining the partition
dimension of a graph, which first proposed in [5].

It is well known that the problem of determining the partition dimension
is NP-complete, see [10]. Before giving the formal definition, we present
detailed explanations showing how usual concept of partition dimension is a
natural generalization of metric dimension. The problem of determining the
partition dimension of a graph has a long history, as it has many applications
in chemistry to represent the chemical compounds [15, 16], network discovery
and verification [2], digital world to recognize the pattern, robotics for image
processing [19], and others [, 0].
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This concept came from the study of metric dimension which was firstly
studied by Harary and Melter [12], and independently by Slater [27]. Indeed,
partition dimension is as a generalization of resolving set when the vertices
are classified in different types.

For an ordered k-partition 2 = {S}, S, ..., S} of vertex set of a connected
graph G and a vertex v of (G, the representation of v with respect to €2 is
defined as the k-tuple

r(v|Q) = (d(v, S1),d(v, Ss), ..., d(v, Sk)),

representing a unique code of v relative to 2, where the distance d(v,S;)
between v and S; is defined as

d(v,S;) = min{d(v,z)|x € S;}.

The partition € is called a resolving partition of G, if r(u|Q2) # r(v|Q2) for
all distinct u,v € V(G). The partition dimension of a graph G, denoted by
pd(G), is the cardinality of a minimum resolving partition of G. It is well
known that, for any connected graph G of order n > 2, 2 < pd(G) < n.
Authors in [5] proved that for connected graph G of order n > 2, pd(G) = 2
if and only if G = P,, where P, is the path of order n and pd(G) = n if and
only if G = K,,, where K, is the complete graph of order n.

The partition dimension of some classes of graphs such as some wheel-
related graphs [11], hexagonal and honeycomb networks [22], unicyclic graphs
[23], trees [25], a homogeneous firecrackers [!], Nanotubes [20], fullerene
graphs [13], kayak paddle graph, cycle graph with chords [28], Cayley di-
graphs [9] and corona product [24] have been studied.

The concept of domination set was first introduced by Oystein Ore in 1962,
see [21], and the study of domination in graphs came about partially as
a result of the study of games and recreational mathematics. In fact, a
domination problem and its related parameters, the problem of placing fire
stations in an optimum way is significant. Cockayne and Hedetniemi [7]
published a survey paper, in which the notation (G) was first used for the
domination number of a graph G. A subset D C V(G) is said to be a
dominating set of G if every vertex of V(G) \ D is adjacent to an element in
D. In [3], Borowiecki and Kuzak have generalized the concept of a dominating
set in a graph. A subset D C V(@) is k-dominating in G if every vertex of
V(G) \ D has at least k neighbors in D. The minimum cardinality among
all k-dominating sets is called the k-domination number of GG, denoted by
7:(G). For k = 1 a k-dominating set D is an ordinary dominating set and
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the classical domination number v, (G), and it is well known that every (k+1)-
dominating set is also a k-dominating set, and so V,(G) < Y+1(G). Some
variants of dominating set in graphs and its related concepts can be found in
], and [1].

Suppose G is a finite group and €2 a subset of GG that is closed under taking
inverses and does not contain the identity. A Cayley graph I' = Cay(G, Q)
is a graph whose vertex set and edge set are defined as follows ([I1]):

V(D) =G; EM)={{z,y}]| 27'y € Q}.

Let G and H be two graphs of order n and m, respectively. The corona
product G o H of two graphs G and H of order n and m, respectively, is
defined as the graph obtained from G and H by taking one copy of G and n
copies of H and joining by an edge each vertex from the i*"-copy of H with
the i'"-vertex of G.

In this paper, we consider determining the partition dimension of cocktail
party graph C'P(m + 1) and corona product G o K,,. Moreover, we obtain
k-domination numbers for C P(m + 1) and corona product C,, o K,,,.

2. RESULTS FOR COCKTAIL PARTY GRAPH CP(m + 1)

Based on [17, 20], we can see that if n > 4 is an even integer and m = § —1,
then the Cayley graph I' = Cay(Z,, S,,), where Z, is the cyclic additive
group and Sy = {1,n—1}, ..., S;, = Sp_1 U{m,n —m} are the inverse closed

subsets of Z, — {0} for any m € N, 1 < m < [§] — 1 is isomorphic to the
cocktail party graph CP(m+1). Some resolving parameters for cocktail party
graph C'P(m + 1) has been computed, see [17]. In this section, we determine

the partition dimension and k-domination number of cocktail party graph
CP(m+1).

2.1. The partition dimension of C'P(m+1). We need the following result:

Theorem 2.1. [5] If G is a nontrivial connected graph, then
pd(G) < dim(G) + 1.

The following theorem gives the partition dimension of CP(m + 1) for

_n _
m =3 1.

Theorem 2.2. Ifn > 6 is an even integer and m = 5 — 1, then
pd(CP(m+1)) =m+2.

Proof. Let G be a graph with vertex set V(G) = {1,2,...,n} and let G be iso-
morphic to the cocktail party graph CP(m+1). Now, let ¥ = {Ry, Ry, ..., R, }
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be a partition set of the vertex set of G so that X is a resolving partition of
G. In the following, we show that the partition dimension of G is m + 2.

Claim 1. Each pair of vertices u and v with distance two in G must lies in
distinct parts of the partition set Y. For this purpose, suppose on contrary
that both vertices v and v lie in the same part, say R; € Y. Since G is a vertex
transitive graph of order n with valency 2m, and all neighbors of the vertices
u and v in other parts of ¥ are identical, it follows that r(u|X) = r(v|X),
which is a contradiction.

Claim 2. We show that the size of all parts R; of > cannot be greater than
or equal to 2. Suppose on contrary that the size of each R; € X is greater
than or equal to 2, and let v and v be distinct pair of vertices in G so that
these vertices lie in the same part of ¥, say R;. Based on Claim 1, d(u,v) = 1,
that is all the elements of each R; € X are neighbors. Now, we consider the
following subcases.

Subcase 2.1. Let R; € ¥ be an arbitrary part of X, j # 4, and let w
and z be distinct pair of vertices in G so that these vertices lie in R; € X,
d(u,w) = 2 and d(v,z) = 1, hence d(u,z) = 1 because for any vertex of
graph G, there is exactly one vertex of GG is at the distance 2, and hence
r(u|R;) = r(v|R;), it follows that r(u|X) = r(v|X), which is a contradiction.

Subcase 2.2. Let R; € X be an arbitrary part of X, j # 4, and let w
and z be distinct pair of vertices in G so that these vertices lie in R; € X,
d(u,w) = 2 and d(v, z) = 2, hence d(u,z) = 1 and d(v,w) = 1, and hence
r(u|R;) = r(v|R;), it follows that r(u|X) = r(v|X), which is a contradiction.

Based on Claim 1, if there is a part R; € X so that the size of R; is m + 2,
then the partition set > of G cannot be a resolving partition of G, because
in this case there are at least two elements of R; is at the distance 2, also
based on Claim 2, the size of some parts of X must be equal to 1. Therefore,
the partition set X of G may be a minimal resolving partition of G if there
is a part R; € X, so that the size of R; is at most m + 1, and hence if there
is a part R; € X, so that the size of R; is m + 1, say R; = {1,2,...,m + 1},
then other m + 1 vertices of GG, say m + 2,...,n, must lie in distinct parts,
it follows that pd(G) > m + 1. On the other hand, based on Theorem 5 of
[17], we know that dim(G) = m+ 1. In particular, based on Theorem 2.1, we
have pd(G) < dim(G) + 1. Thus the partition dimension of G is m + 2. [

Example 2.3. Let G be a graph with vertex set V(G) = {1,2,...,12} and
let G' be isomorphic to the cocktail party graph C'P(6). Then we can see that
the partition set

A= {{1,2},{3,4},{5,6}, {7}, {8}, {9}, {10}, {11}, {12} },
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is a resolving partition of G, and the partition sets

IT={{1,2,3,4,56}, {7}, {8}, {9}, {10}, {11}, {12}},
and

» = {{1,2,3,4,5},{6,7}, {8}, {9}, {10}, {11}, {12}},

are minimal resolving partition of G.

2.2. k-domination number of CP(m + 1). In this subsection, we obtain
v (CP(m + 1)). First we consider k = 1.

Proposition 2.4. For any integer m > 1, if n = 2m + 2, then
M(CP(m+1)) =2.

Proof. Let G be a graph with vertex set V(G) = {1,2,...,n} and let G be
isomorphic to the cocktail party graph CP(m+1). If u and v are distinct pair
of vertices in GG, then the length of a shortest path from wu to v is d(u,v) =1
or 2, since diam(G) = 2. On the other hand, the size of any clique in G is
m+ 1, it follows that the size of any independent set of vertices in G is 2, and
this implies that any 1-dominating set in G has cardinality at least 2, that is
m(G) > 2. Let D = {u,v}. Since every vertex of V(G) \ D has at least one
neighbor in D it follows that v (G) = 2. O

Proposition 2.5. For any integer m > 1, if n = 2m + 2, then
’yg(CP(m + 1)) = 2.

Proof. Let G be a graph with vertex set V(G) = {1,2,...,n} and let G be
isomorphic to the cocktail party graph C'P(m + 1). Since G is a vertex
transitive graph of order n with valency 2m, diameter 2, and the size of any
independent set of vertices in G is 2, it follows that for every vertex u in
G, there is exactly one vertex of G say v, so that d(u,v) = 2. Specially,
every 2-dominating set of G is a 1-dominating set of G and it follows that
7 (G) < 72(G), and so any 2-dominating set in G has cardinality greater than
or equal to 2. If we now consider the subset D = {u,v} of vertices of G with
d(u,v) = 2, then we see that D is a 2-dominating set of cocktail party graph
CP(m+1). Because every vertex of V(G) \ D has exactly 2 neighbors in D,
and so 12(G) = 2. O

Theorem 2.6. For any integer m > 2, if n =2m—+2, and 3 < k < 2m, then

k if k is an even integer,
w(CP(m+1)) =
k41 if k is an odd integer.
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Proof. Let G be a graph with vertex set V(G) = {1,2,...,n} and let G be
isomorphic to the cocktail party graph C'P(m+1). We can verify that if D is
a subset of vertices of G with |D| < k — 1, then D cannot be a k-dominating
set of G, and so any k-dominating set in G has cardinality greater than or
equal to k. In the following, we consider two parts:

(i) If k£ is an even integer and D is a subset of vertices of G with |D| = k
and for every u € D there is v € D so that dg(u,v) = 2, then the set
D is a k-dominating set of G. Because every vertex of V(G) \ D has
exactly k neighbors in D, and so v;(G) = k.

(ii) Now, suppose that k is an odd integer and D is a k-dominating set
of G. We claim that |D| > k. For this purpose, suppose on contrary
that |D| = k. Since k is an odd integer then there are u € D and
v € V(G)\D such that dg(u,v) = 2 and so D cannot be a k-dominating
set of G. Because the vertex v € V(G)\ D has exactly (k—1) neighbors
in D which is a contradiction. Now, if k£ is an odd integer and D is
a subset of vertices of G such that |D| = k + 1, and for every u € D
there is v € D such that dg(u,v) = 2, then this set is a k-dominating
set of G. Therefore v (G) = k + 1.

]

3. RESULTS FOR G o K,,

Let n and m be fixed positive integers, with n > 3 and m > 2, and let
C,, K, and K, denote the cycle graph of order n on vertices
V(Cy,) = {v1,...,v,}, the complete graph on m vertices, and the comple-
ment of K,,, respectively. The partition dimension of corona product has
been widely studied in literature (see e.g. [241]). Rodriguez-Velazquez, Yero
and Kuziak in [21] proved that for n > 2m +1 > 5, pd(P, o K,,) = m + 2
and for n = |V(G)| > B(H) > 2, pd(Go H) > (H) + 1, where B(H) is the
number of isolated vertices of H. In this section, we determine the partition
dimension of Go K,,. Moreover, we obtain k-domination numbers of C), 0 K,,,.

Observation 3.1. [21] For any connected graph G of order n > m > 2,
(i) pd(Go Kp) >m+1.
(ii) For n > m > 2, pd(P, o K,;,) = m + 1.

Theorem 3.2. For any graph G of order n > 3, with n > m > 2, we have
(i) If m = n — 1, then any partition set of the vertex set of G o K,, with
the cardinality m cannot be a resolving partition of G o K,,.
(ii) If m = n, then pd(G o K,,) = n.
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(iii) If s =n —1 > 2, then pd(G o K,) = n.
(iv) If G is connected and t = n—2 > 2, then the cardinality of a minimum
resolving partition of G o Ky is at most n.

Proof. (i) Let V(G o K,,) = Vi U Vs, where Vi = V(G) = {vy,...,v,} and
Vo = {011, ooy Uiy -+, Unl, -, Unm }» SO that every vertex v; € V] is adjacent to
the vertices vj1, vi2, ..., Vim, and deg(v;;) = 1 for every vertex v;; € Vo. Now,
let A ={S},S5s, ..., S} be a partition set of the vertex set of G o K,,. Since,
the set V; contains n vertices and m < n, then there is a part S, € A, with
at least two vertices of Vi, say v;, v;; belong to S,. Hence r(v;|A) = r(v;|A),
because none of the vertices v;1, v;9, ..., v;; cannot belong to the same part S;
of the partition set A. Thus if m = n— 1, then any partition set of the vertex
set of G o K, as the cardinality m cannot be a resolving partition of G o K,,.

(ii) Let V(G o K,) = V1UVa, where V; and V; is defined in the proof of Part
(i). Now, let ¥ = {5, Sy, ..., S} be a partition set of the vertex set of Go K,
so that ¥ is a resolving partition of G o K,,. Since every vertex v; € Vj is
adjacent to all the vertices v;1, vy, ..., v; € Vo and all the vertices v;1, v;o, ..., Vin
are pendant, then none of the vertices v;1, vj9, ..., v;;, cannot belong to the same
part S; of the resolving partition >, and hence k must be greater than or
equal to n. Therefore, the cardinality of any minimum resolving partition of
G o K,, must be greater than or equal to n. For i € {1,2,...,n}, if we consider
S; = {vi, v1i, V24, ooy Uni }, then Q = {S57,5s,...,.5,} is a resolving partition of
G o K,,. Because according to the choice of each S; € , it is sufficient to
show that the representations of all the elements of S; with respect to {2 are
not identical. For this aim, since v; € S; and v; is adjacent to an element of
each S; € (), then we have

ith

r(v|Q)=(1,....,1,7 0 ,1,...,1),

also for v; € S; we have

T(U“|Q) = (2, ceny 2,

in particular, for every v; € S;; k,i € {1,...,n}, k # i, may be k > ior k < i.
So if k > i, then we have

ith k/’th

= =~
roglQ) = (2,..,2,70 ,2,..,2,71 ,2,..,2).
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Hence, the partition set 2 is a resolving partition of G o K,,. Thus the size
of any minimum resolving partition of G o K, is n.

(iii) Let [n] = {1,2,...,n} and V(G o K,) = V; U Va, where
‘/1 = V(G) = {Ul, ...,Un}, ‘/2 = {Alj,AQj, ---;Anj};

and let A;; = jzl{vij}, 1 < i < n so that every vertex v; € V] is adjacent to
the vertices v;1, Vg, ..., vis, and deg(v;;) = 1 for every vertex v;; € V2. Based
on Theorem 3.2 (i), the size of any minimum resolving partition of G o K
must be greater than or equal to n. Now, for i € [n], if we consider v; € S;
and let S; contains exactly one element of each Ay; for k € [n] —{i}, then the
partition set Y = {51, Sy, ..., S,} is a minimal resolving partition of G o K.
Because according to choice of each S; € T, it is sufficient to show that the
representations of all the elements of S; with respect to T are not identical.
For this aim, since, for i € [n], we have v; € S; and v; is adjacent to an
element of each S, € T, k # 1, then we have

7:th

r(v]T)=(1,...,1, 0 |1,....1),

also for vy; € S; we have

Z‘th kth

=~ A~
rog| ) = (2,..,2,70 ,2,..,2,71,2,...,2).

Hence, the partition set T is a resolving partition of G o K. Thus the size
of any minimum resolving partition of G o K is n.

(iv) Let V(G o K;) = V4 U V,, where V; and V5 can be defined similarly to
in the proof of Part (i). Based on the Observation 3.1, pd(G o K;) > n — 1.
For i € {1,2,....,n} — {n — 1,n}, if we consider S; = {v;,v1;,v2, ..., Vi },
then by similar methods in previous parts we can show that the partition set
I = {S1,5s,..., Sn 2, {vn_1}, {v,}} is a resolving partition of G o K;. Due to
the uncertainty of the graph structure, we can not show that the partition
set II is a minimal resolving partition. Therefore the size of any minimum
resolving partition of G o K, is at most n. [J

Example 3.3. Let G be any graph of order 3, and let G o K3 be a graph
with vertex set V3 U Vs, where Vi = V(G) = {v1,v9,v3} and

Vo = {011, 12; Va1, Vag; V31, V32 },
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so that every vertex v; € V; is adjacent to the vertices wv;1,v;0, and
deg(vij) = 1, for every vertex v;; € V5. Then we can see that the parti-
tion set

A= {{Uh U217U31}> {027011,7132}, {03,1112,022}},

is a resolving partition of G o K5, and hence based on Theorem 3.2 (iii),

Corollary 3.4. Letn be fized positive integer, so thatn > 5. Ifm =n—3 > 2,
then pd(C, o K,) < n.

Proof. Let V(C, o K,,) = Vi UV,, where V; = V(C,) = {vi,...,v.},
Vé — {A1j7A2j7"'7Anj}7 and let AZ] = ;nzl{’l)ij}, 1 S 1 S n so that ev-
ery vertex v; € V) is adjacent to the vertices vj, via, ..., Vim, and deg(v;;) =1
for every vertex v;; € V5. Based on the Observation 3.1, pd(C’noK_m) >n—2.
If we consider S1 = {vy, v11, V91, ..., Un1}, and for i € {2,3,...,n — 3}, we con-
sider S; = {vj11, V14, V24, - Uni b5 Sn—a = {v2,v,} and S,,_1 = {v,_1}, then we
can see that the partition set = {51, 5, ..., S,_1} is a resolving partition of
C, o K,,. Because according to the choice of each S; € ), we can see that all
the vertices in Vi, so that the representations of these vertices are identical
with respect to the part S, _o = {v9,v,} of £, belong in distinct parts of €,
and the representations of these vertices are not identical with respect to the
part S,-1 = {v,—1} of Q. On the other hand, there is exactly one vertex
of each A;; so that belongs in each part S;, for i € {3,...,n — 3} so that is
adjacent to v;. Therefore, the representations of all the elements of each part
S; with respect to () are not identical, and hence, € is a resolving partition
of C,, 0 K,,. Thus pd(C,, 0 K,,) <n — 1.

]

Example 3.5. Let C5 o Ky be a graph with vertex set Vi U V5, where
Vi =V (C5) = {v1,...,v5} and

Vo = {11, v12, Va1, Va2, V31, V32, Va1, Vg2, U1, Usa )y

so that every vertex v; € V; is adjacent to the vertices wv;1,v;0, and
deg(vij) = 1, for every vertex v;; € Vo. Then we can see that the parti-
tion set

A — {{Uly V11, V21, V31, V41, U51}7 {U37 V12, V22, V32, V42, U52}7 {U27 /05}7 {U4}}7

is a resolving partition of C5 o Ky, and hence pd(Cs o Ks) < 4.

The following proposition, is easy to obtain.
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Proposition 3.6. For any graph G of order n > 1, if m > n, then the
cardinality of a minimum resolving partition of G o K, is m.

Now, we obtain the k-domination number of C, o K,,:

Theorem 3.7. Forn > 3 and m > 2,
(n if k=1,

nm if 2 <k <m,

nm+(Cy)  ifk=m+1,

| nm +%»(C,)  ifk=m+2.

Proof. If k = 1 and we consider the subset C' = V(C,,) = {v1,...,v,} of
vertices of C,,, then the set C is a minimal 1-dominating set of C,, o K,,,
because every vertex of V(C,, 0 K,,)\ C has exactly one neighbor in C, and so
11(C, 0 K,,) = n. Now, if 2 < k <m and D C V(C, 0 K,,) is an arbitrary k-
dominating set of C,,0K,,, then any pendant vertex of C,,0K,, must lie in each
arbitrary k-dominating set of C, o K,,, and so the size of any k-dominating
set in C), o K, is greater than or equal to nm. If we now consider the subset
D = Vo = {011, e, Vipmy -y Un1, -y Upm }, Of vertices of C, o K,,,, then we can
see that this set is a k-dominating set of C,, o K,,, because every vertex of
V(C,oK,,)\ D has at least k neighbors in D. In particular, we conclude that
this set is a minimal k-dominating set of C,, o K,,, and so Y (Ch oK_m) = nm.
Especially, if k > m and F C V(C, o K,,,) is an arbitrary k-dominating set
of C, o K,,, then by similar way is done in the previous result, it can be
shown that any k-dominating set in C, o K, has cardinality greater than
nm, it follows that if k = m + 1, then v,(C, o K,,) = nm + 11(C,,), also, if
k=m+ 2, then v,(C, 0 K,,,) = nm + ¥2(C,,). O

4. CONCLUSION

This paper considered the partition dimension of cocktail party graph
CP(m + 1) and corona product G o K,,. Also the k-domination numbers
of CP(m + 1) and corona product C,, o K,,, has computed for some cases.
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