
Journal of Algebraic Systems, Vol. 14(No. 2): (2026), pp 331-342.
https://doi.org/10.22044/JAS.2024.14317.1816

THE PARTITION DIMENSION AND k-DOMINATION NUMBER OF
TWO SPECIFIC GRAPHS

A. Zafari∗ and S. Alikhani

Abstract. For an ordered k-partition Ω = {S1, S2, ..., Sk} of vertex set of a con-
nected graph G and a vertex v of G, the representation of v with respect to Ω is
defined as the k-tuple r(v|Ω) = (d(v, S1), d(v, S2), ..., d(v, Sk)). The partition Ω is
called a resolving partition of G, if r(u|Ω) ̸= r(v|Ω) for all distinct u, v ∈ V (G). The
partition dimension of a graph G, denoted by pd(G), is the cardinality of a minimum
resolving partition of G. A subset D ⊆ V (G) is k-dominating in G, if every vertex
of V (G) \ D has at least k neighbors in D. The minimum cardinality among all
k-dominating sets is called the k-domination number of G, denoted by γk(G). In this
paper, we determine the partition dimension of cocktail party graph CP (m+ 1) and
corona product G ◦Km. Moreover, we obtain k-domination numbers for CP (m+ 1)
and corona product Cn ◦Km.

1. Introduction
Given a set of vertices S = {v1, ..., vk} of a connected simple graph G,

the metric representation of a vertex v of G with respect to S is the vector
r(v|S) = (d(v, v1), ..., d(v, vk)), where d(v, vi), i ∈ {1, ..., k} denotes the dis-
tance between v and vi. The set S is a resolving set of G, if for every pair
of vertices u,v of V (G), r(u|S) ̸= r(v|S). The metric dimension dim(G) of
G is the minimum cardinality of any resolving set of G. This parameter has
studied well in literature.

One of the useful concepts in graph theory is determining the partition
dimension of a graph, which first proposed in [5].

It is well known that the problem of determining the partition dimension
is NP-complete, see [10]. Before giving the formal definition, we present
detailed explanations showing how usual concept of partition dimension is a
natural generalization of metric dimension. The problem of determining the
partition dimension of a graph has a long history, as it has many applications
in chemistry to represent the chemical compounds [15, 16], network discovery
and verification [2], digital world to recognize the pattern, robotics for image
processing [19], and others [4, 6].
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This concept came from the study of metric dimension which was firstly
studied by Harary and Melter [12], and independently by Slater [27]. Indeed,
partition dimension is as a generalization of resolving set when the vertices
are classified in different types.

For an ordered k-partition Ω = {S1, S2, ..., Sk} of vertex set of a connected
graph G and a vertex v of G, the representation of v with respect to Ω is
defined as the k-tuple

r(v|Ω) = (d(v, S1), d(v, S2), ..., d(v, Sk)),

representing a unique code of v relative to Ω, where the distance d(v, Si)
between v and Si is defined as

d(v, Si) = min{d(v, x)|x ∈ Si}.

The partition Ω is called a resolving partition of G, if r(u|Ω) ̸= r(v|Ω) for
all distinct u, v ∈ V (G). The partition dimension of a graph G, denoted by
pd(G), is the cardinality of a minimum resolving partition of G. It is well
known that, for any connected graph G of order n ≥ 2, 2 ≤ pd(G) ≤ n.
Authors in [5] proved that for connected graph G of order n ≥ 2, pd(G) = 2
if and only if G = Pn, where Pn is the path of order n and pd(G) = n if and
only if G = Kn, where Kn is the complete graph of order n.

The partition dimension of some classes of graphs such as some wheel-
related graphs [14], hexagonal and honeycomb networks [22], unicyclic graphs
[23], trees [25], a homogeneous firecrackers [1], Nanotubes [26], fullerene
graphs [18], kayak paddle graph, cycle graph with chords [28], Cayley di-
graphs [9] and corona product [24] have been studied.

The concept of domination set was first introduced by Oystein Ore in 1962,
see [21], and the study of domination in graphs came about partially as
a result of the study of games and recreational mathematics. In fact, a
domination problem and its related parameters, the problem of placing fire
stations in an optimum way is significant. Cockayne and Hedetniemi [7]
published a survey paper, in which the notation γ(G) was first used for the
domination number of a graph G. A subset D ⊆ V (G) is said to be a
dominating set of G if every vertex of V (G) \D is adjacent to an element in
D. In [3], Borowiecki and Kuzak have generalized the concept of a dominating
set in a graph. A subset D ⊆ V (G) is k-dominating in G if every vertex of
V (G) \ D has at least k neighbors in D. The minimum cardinality among
all k-dominating sets is called the k-domination number of G, denoted by
γk(G). For k = 1 a k-dominating set D is an ordinary dominating set and
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the classical domination number γ1(G), and it is well known that every (k+1)-
dominating set is also a k-dominating set, and so γk(G) ≤ γk+1(G). Some
variants of dominating set in graphs and its related concepts can be found in
[8], and [13].

Suppose G is a finite group and Ω a subset of G that is closed under taking
inverses and does not contain the identity. A Cayley graph Γ = Cay(G,Ω)
is a graph whose vertex set and edge set are defined as follows ([11]):

V (Γ) = G; E(Γ) = {{x, y} | x−1y ∈ Ω}.
Let G and H be two graphs of order n and m, respectively. The corona
product G ◦ H of two graphs G and H of order n and m, respectively, is
defined as the graph obtained from G and H by taking one copy of G and n
copies of H and joining by an edge each vertex from the ith-copy of H with
the ith-vertex of G.

In this paper, we consider determining the partition dimension of cocktail
party graph CP (m + 1) and corona product G ◦ Km. Moreover, we obtain
k-domination numbers for CP (m+ 1) and corona product Cn ◦Km.

2. Results for cocktail party graph CP (m+ 1)

Based on [17, 20], we can see that if n ≥ 4 is an even integer and m = n
2 −1,

then the Cayley graph Γ = Cay(Zn, Sm), where Zn is the cyclic additive
group and S1 = {1, n−1}, ..., Sm = Sm−1∪{m,n−m} are the inverse closed
subsets of Zn − {0} for any m ∈ N, 1 ≤ m ≤ [n2 ] − 1 is isomorphic to the
cocktail party graph CP (m+1). Some resolving parameters for cocktail party
graph CP (m+1) has been computed, see [17]. In this section, we determine
the partition dimension and k-domination number of cocktail party graph
CP (m+ 1).
2.1. The partition dimension of CP (m+1). We need the following result:

Theorem 2.1. [5] If G is a nontrivial connected graph, then
pd(G) ≤ dim(G) + 1.

The following theorem gives the partition dimension of CP (m + 1) for
m = n

2 − 1.

Theorem 2.2. If n ≥ 6 is an even integer and m = n
2 − 1, then

pd(CP (m+ 1)) = m+ 2.

Proof. Let G be a graph with vertex set V (G) = {1, 2, ..., n} and let G be iso-
morphic to the cocktail party graph CP (m+1). Now, let Σ = {R1, R2, ..., Rp}
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be a partition set of the vertex set of G so that Σ is a resolving partition of
G. In the following, we show that the partition dimension of G is m+ 2.

Claim 1. Each pair of vertices u and v with distance two in G must lies in
distinct parts of the partition set Σ. For this purpose, suppose on contrary
that both vertices u and v lie in the same part, say Ri ∈ Σ. Since G is a vertex
transitive graph of order n with valency 2m, and all neighbors of the vertices
u and v in other parts of Σ are identical, it follows that r(u|Σ) = r(v|Σ),
which is a contradiction.

Claim 2. We show that the size of all parts Ri of Σ cannot be greater than
or equal to 2. Suppose on contrary that the size of each Ri ∈ Σ is greater
than or equal to 2, and let u and v be distinct pair of vertices in G so that
these vertices lie in the same part of Σ, say Ri. Based on Claim 1, d(u, v) = 1,
that is all the elements of each Ri ∈ Σ are neighbors. Now, we consider the
following subcases.

Subcase 2.1. Let Rj ∈ Σ be an arbitrary part of Σ, j ̸= i, and let w
and z be distinct pair of vertices in G so that these vertices lie in Rj ∈ Σ,
d(u,w) = 2 and d(v, z) = 1, hence d(u, z) = 1 because for any vertex of
graph G, there is exactly one vertex of G is at the distance 2, and hence
r(u|Rj) = r(v|Rj), it follows that r(u|Σ) = r(v|Σ), which is a contradiction.

Subcase 2.2. Let Rj ∈ Σ be an arbitrary part of Σ, j ̸= i, and let w
and z be distinct pair of vertices in G so that these vertices lie in Rj ∈ Σ,
d(u,w) = 2 and d(v, z) = 2, hence d(u, z) = 1 and d(v, w) = 1, and hence
r(u|Rj) = r(v|Rj), it follows that r(u|Σ) = r(v|Σ), which is a contradiction.

Based on Claim 1, if there is a part Ri ∈ Σ so that the size of Ri is m+ 2,
then the partition set Σ of G cannot be a resolving partition of G, because
in this case there are at least two elements of Ri is at the distance 2, also
based on Claim 2, the size of some parts of Σ must be equal to 1. Therefore,
the partition set Σ of G may be a minimal resolving partition of G if there
is a part Ri ∈ Σ, so that the size of Ri is at most m + 1, and hence if there
is a part Ri ∈ Σ, so that the size of Ri is m + 1, say Ri = {1, 2, ...,m + 1},
then other m + 1 vertices of G, say m + 2, ..., n, must lie in distinct parts,
it follows that pd(G) > m + 1. On the other hand, based on Theorem 5 of
[17], we know that dim(G) = m+1. In particular, based on Theorem 2.1, we
have pd(G) ≤ dim(G) + 1. Thus the partition dimension of G is m+ 2. □
Example 2.3. Let G be a graph with vertex set V (G) = {1, 2, ..., 12} and
let G be isomorphic to the cocktail party graph CP (6). Then we can see that
the partition set

∆ = {{1, 2}, {3, 4}, {5, 6}, {7}, {8}, {9}, {10}, {11}, {12}},
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is a resolving partition of G, and the partition sets
Π = {{1, 2, 3, 4, 5, 6}, {7}, {8}, {9}, {10}, {11}, {12}},

and
Σ = {{1, 2, 3, 4, 5}, {6, 7}, {8}, {9}, {10}, {11}, {12}},

are minimal resolving partition of G.

2.2. k-domination number of CP (m + 1). In this subsection, we obtain
γk(CP (m+ 1)). First we consider k = 1.

Proposition 2.4. For any integer m ≥ 1, if n = 2m+ 2, then
γ1(CP (m+ 1)) = 2.

Proof. Let G be a graph with vertex set V (G) = {1, 2, ..., n} and let G be
isomorphic to the cocktail party graph CP (m+1). If u and v are distinct pair
of vertices in G, then the length of a shortest path from u to v is d(u, v) = 1
or 2, since diam(G) = 2. On the other hand, the size of any clique in G is
m+1, it follows that the size of any independent set of vertices in G is 2, and
this implies that any 1-dominating set in G has cardinality at least 2, that is
γ1(G) ≥ 2. Let D = {u, v}. Since every vertex of V (G) \D has at least one
neighbor in D it follows that γ1(G) = 2. □
Proposition 2.5. For any integer m ≥ 1, if n = 2m+ 2, then

γ2(CP (m+ 1)) = 2.

Proof. Let G be a graph with vertex set V (G) = {1, 2, ..., n} and let G be
isomorphic to the cocktail party graph CP (m + 1). Since G is a vertex
transitive graph of order n with valency 2m, diameter 2, and the size of any
independent set of vertices in G is 2, it follows that for every vertex u in
G, there is exactly one vertex of G say v, so that d(u, v) = 2. Specially,
every 2-dominating set of G is a 1-dominating set of G and it follows that
γ1(G) ≤ γ2(G), and so any 2-dominating set in G has cardinality greater than
or equal to 2. If we now consider the subset D = {u, v} of vertices of G with
d(u, v) = 2, then we see that D is a 2-dominating set of cocktail party graph
CP (m+1). Because every vertex of V (G) \D has exactly 2 neighbors in D,
and so γ2(G) = 2. □
Theorem 2.6. For any integer m ≥ 2, if n = 2m+2, and 3 ≤ k ≤ 2m, then

γk(CP (m+ 1)) =

 k if k is an even integer,

k + 1 if k is an odd integer.
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Proof. Let G be a graph with vertex set V (G) = {1, 2, ..., n} and let G be
isomorphic to the cocktail party graph CP (m+1). We can verify that if D is
a subset of vertices of G with |D| ≤ k− 1, then D cannot be a k-dominating
set of G, and so any k-dominating set in G has cardinality greater than or
equal to k. In the following, we consider two parts:

(i) If k is an even integer and D is a subset of vertices of G with |D| = k
and for every u ∈ D there is v ∈ D so that dG(u, v) = 2, then the set
D is a k-dominating set of G. Because every vertex of V (G) \ D has
exactly k neighbors in D, and so γk(G) = k.

(ii) Now, suppose that k is an odd integer and D is a k-dominating set
of G. We claim that |D| > k. For this purpose, suppose on contrary
that |D| = k. Since k is an odd integer then there are u ∈ D and
v ∈ V (G)\D such that dG(u, v) = 2 and so D cannot be a k-dominating
set of G. Because the vertex v ∈ V (G)\D has exactly (k−1) neighbors
in D which is a contradiction. Now, if k is an odd integer and D is
a subset of vertices of G such that |D| = k + 1, and for every u ∈ D
there is v ∈ D such that dG(u, v) = 2, then this set is a k-dominating
set of G. Therefore γk(G) = k + 1.

□

3. Results for G ◦Km

Let n and m be fixed positive integers, with n ≥ 3 and m ≥ 2, and let
Cn, Km and Km denote the cycle graph of order n on vertices
V (Cn) = {v1, ..., vn}, the complete graph on m vertices, and the comple-
ment of Km, respectively. The partition dimension of corona product has
been widely studied in literature (see e.g. [24]). Rodríguez-Velázquez, Yero
and Kuziak in [24] proved that for n ≥ 2m + 1 ≥ 5, pd(Pn ◦ Km) = m + 2
and for n = |V (G)| > β(H) ≥ 2, pd(G ◦H) ≥ β(H) + 1, where β(H) is the
number of isolated vertices of H. In this section, we determine the partition
dimension of G◦Km. Moreover, we obtain k-domination numbers of Cn◦Km.

Observation 3.1. [24] For any connected graph G of order n > m ≥ 2,
(i) pd(G ◦Km) ≥ m+ 1.
(ii) For n ≥ m ≥ 2, pd(Pn ◦Km) = m+ 1.

Theorem 3.2. For any graph G of order n ≥ 3, with n ≥ m ≥ 2, we have
(i) If m = n − 1, then any partition set of the vertex set of G ◦Km with

the cardinality m cannot be a resolving partition of G ◦Km.
(ii) If m = n, then pd(G ◦Kn) = n.



THE PARTITION DIMENSION AND k-DOMINATION... 337

(iii) If s = n− 1 ≥ 2, then pd(G ◦Ks) = n.
(iv) If G is connected and t = n−2 ≥ 2, then the cardinality of a minimum

resolving partition of G ◦Kt is at most n.

Proof. (i) Let V (G ◦ Km) = V1 ∪ V2, where V1 = V (G) = {v1, ..., vn} and
V2 = {v11, ..., v1m, ..., vn1, ..., vnm}, so that every vertex vi ∈ V1 is adjacent to
the vertices vi1, vi2, ..., vim, and deg(vij) = 1 for every vertex vij ∈ V2. Now,
let ∆ = {S1, S2, ..., Sm} be a partition set of the vertex set of G ◦Km. Since,
the set V1 contains n vertices and m < n, then there is a part Sr ∈ ∆, with
at least two vertices of V1, say vi, vj; belong to Sr. Hence r(vi|∆) = r(vj|∆),
because none of the vertices vi1, vi2, ..., vim cannot belong to the same part Si

of the partition set ∆. Thus if m = n−1, then any partition set of the vertex
set of G ◦Km as the cardinality m cannot be a resolving partition of G ◦Km.

(ii) Let V (G◦Kn) = V1∪V2, where V1 and V2 is defined in the proof of Part
(i). Now, let Σ = {S1, S2, ..., Sk} be a partition set of the vertex set of G◦Kn

so that Σ is a resolving partition of G ◦ Kn. Since every vertex vi ∈ V1 is
adjacent to all the vertices vi1, vi2, ..., vin ∈ V2 and all the vertices vi1, vi2, ..., vin
are pendant, then none of the vertices vi1, vi2, ..., vin cannot belong to the same
part Si of the resolving partition Σ, and hence k must be greater than or
equal to n. Therefore, the cardinality of any minimum resolving partition of
G◦Kn must be greater than or equal to n. For i ∈ {1, 2, ..., n}, if we consider
Si = {vi, v1i, v2i, ..., vni}, then Ω = {S1, S2, ..., Sn} is a resolving partition of
G ◦ Kn. Because according to the choice of each Si ∈ Ω, it is sufficient to
show that the representations of all the elements of Si with respect to Ω are
not identical. For this aim, since vi ∈ Si and vi is adjacent to an element of
each Sj ∈ Ω, then we have

r(vi|Ω) = (1, ..., 1,

ith︷︸︸︷
0 , 1, ..., 1),

also for vii ∈ Si we have

r(vii|Ω) = (2, ..., 2,

ith︷︸︸︷
0 , 2, ..., 2),

in particular, for every vki ∈ Si; k, i ∈ {1, ..., n}, k ̸= i; may be k > i or k < i.
So if k > i, then we have

r(vki|Ω) = (2, ..., 2,

ith︷︸︸︷
0 , 2, ..., 2,

kth︷︸︸︷
1 , 2, ..., 2).
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Hence, the partition set Ω is a resolving partition of G ◦Kn. Thus the size
of any minimum resolving partition of G ◦Kn is n.

(iii) Let [n] = {1, 2, ..., n} and V (G ◦Ks) = V1 ∪ V2, where

V1 = V (G) = {v1, ..., vn}, V2 = {A1j, A2j, ..., Anj},

and let Aij = ∪s
j=1{vij}, 1 ≤ i ≤ n so that every vertex vi ∈ V1 is adjacent to

the vertices vi1, vi2, ..., vis, and deg(vij) = 1 for every vertex vij ∈ V2. Based
on Theorem 3.2 (i), the size of any minimum resolving partition of G ◦ Ks

must be greater than or equal to n. Now, for i ∈ [n], if we consider vi ∈ Si

and let Si contains exactly one element of each Akj for k ∈ [n]−{i}, then the
partition set Υ = {S1, S2, ..., Sn} is a minimal resolving partition of G ◦Ks.
Because according to choice of each Si ∈ Υ, it is sufficient to show that the
representations of all the elements of Si with respect to Υ are not identical.
For this aim, since, for i ∈ [n], we have vi ∈ Si and vi is adjacent to an
element of each Sk ∈ Υ, k ̸= i, then we have

r(vi|Υ) = (1, ..., 1,

ith︷︸︸︷
0 , 1, ..., 1),

also for vkj ∈ Si we have

r(vkj|Υ) = (2, ..., 2,

ith︷︸︸︷
0 , 2, ..., 2,

kth︷︸︸︷
1 , 2, ..., 2).

Hence, the partition set Υ is a resolving partition of G ◦Ks. Thus the size
of any minimum resolving partition of G ◦Ks is n.

(iv) Let V (G ◦Kt) = V1 ∪ V2, where V1 and V2 can be defined similarly to
in the proof of Part (i). Based on the Observation 3.1, pd(G ◦Kt) ≥ n − 1.
For i ∈ {1, 2, ..., n} − {n − 1, n}, if we consider Si = {vi, v1i, v2i, ..., vni},
then by similar methods in previous parts we can show that the partition set
Π = {S1, S2, ..., Sn−2, {vn−1}, {vn}} is a resolving partition of G ◦Kt. Due to
the uncertainty of the graph structure, we can not show that the partition
set Π is a minimal resolving partition. Therefore the size of any minimum
resolving partition of G ◦Kt is at most n. □

Example 3.3. Let G be any graph of order 3, and let G ◦ K2 be a graph
with vertex set V1 ∪ V2, where V1 = V (G) = {v1, v2, v3} and

V2 = {v11, v12; v21, v22; v31, v32},
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so that every vertex vi ∈ V1 is adjacent to the vertices vi1, vi2, and
deg(vij) = 1, for every vertex vij ∈ V2. Then we can see that the parti-
tion set

∆ = {{v1, v21, v31}, {v2, v11, v32}, {v3, v12, v22}},
is a resolving partition of G ◦ K2, and hence based on Theorem 3.2 (iii),
pd(G ◦K2) = 3.

Corollary 3.4. Let n be fixed positive integer, so that n ≥ 5. If m = n−3 ≥ 2,
then pd(Cn ◦Km) < n.
Proof. Let V (Cn ◦ Km) = V1 ∪ V2, where V1 = V (Cn) = {v1, ..., vn},
V2 = {A1j, A2j, ..., Anj}, and let Aij = ∪m

j=1{vij}, 1 ≤ i ≤ n so that ev-
ery vertex vi ∈ V1 is adjacent to the vertices vi1, vi2, ..., vim, and deg(vij) = 1
for every vertex vij ∈ V2. Based on the Observation 3.1, pd(Cn◦Km) ≥ n−2.
If we consider S1 = {v1, v11, v21, ..., vn1}, and for i ∈ {2, 3, ..., n − 3}, we con-
sider Si = {vi+1, v1i, v2i, ..., vni}, Sn−2 = {v2, vn} and Sn−1 = {vn−1}, then we
can see that the partition set Ω = {S1, S2, ..., Sn−1} is a resolving partition of
Cn ◦Km. Because according to the choice of each Si ∈ Ω, we can see that all
the vertices in V1, so that the representations of these vertices are identical
with respect to the part Sn−2 = {v2, vn} of Ω, belong in distinct parts of Ω,
and the representations of these vertices are not identical with respect to the
part Sn−1 = {vn−1} of Ω. On the other hand, there is exactly one vertex
of each Aij so that belongs in each part Si, for i ∈ {3, ..., n − 3} so that is
adjacent to vi. Therefore, the representations of all the elements of each part
Si with respect to Ω are not identical, and hence, Ω is a resolving partition
of Cn ◦Km. Thus pd(Cn ◦Km) ≤ n− 1.

□

Example 3.5. Let C5 ◦ K2 be a graph with vertex set V1 ∪ V2, where
V1 = V (C5) = {v1, ..., v5} and

V2 = {v11, v12, v21, v22, v31, v32, v41, v42, v51, v52},

so that every vertex vi ∈ V1 is adjacent to the vertices vi1, vi2, and
deg(vij) = 1, for every vertex vij ∈ V2. Then we can see that the parti-
tion set

∆ = {{v1, v11, v21, v31, v41, v51}, {v3, v12, v22, v32, v42, v52}, {v2, v5}, {v4}},

is a resolving partition of C5 ◦K2, and hence pd(C5 ◦K2) ≤ 4.

The following proposition, is easy to obtain.
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Proposition 3.6. For any graph G of order n ≥ 1, if m > n, then the
cardinality of a minimum resolving partition of G ◦Km is m.

Now, we obtain the k-domination number of Cn ◦Km:

Theorem 3.7. For n ≥ 3 and m ≥ 2,

γk(Cn ◦Km) =



n if k = 1,

nm if 2 ≤ k ≤ m,

nm+ γ1(Cn) if k = m+ 1,

nm+ γ2(Cn) if k = m+ 2.

Proof. If k = 1 and we consider the subset C = V (Cn) = {v1, ..., vn} of
vertices of Cn, then the set C is a minimal 1-dominating set of Cn ◦ Km,
because every vertex of V (Cn◦Km)\C has exactly one neighbor in C, and so
γ1(Cn ◦Km) = n. Now, if 2 ≤ k ≤ m and D ⊆ V (Cn ◦Km) is an arbitrary k-
dominating set of Cn◦Km, then any pendant vertex of Cn◦Km must lie in each
arbitrary k-dominating set of Cn ◦Km, and so the size of any k-dominating
set in Cn ◦Km is greater than or equal to nm. If we now consider the subset
D = V2 = {v11, ..., v1m, ..., vn1, ..., vnm}, of vertices of Cn ◦ Km, then we can
see that this set is a k-dominating set of Cn ◦ Km, because every vertex of
V (Cn◦Km)\D has at least k neighbors in D. In particular, we conclude that
this set is a minimal k-dominating set of Cn ◦Km, and so γk(Cn ◦Km) = nm.
Especially, if k > m and F ⊆ V (Cn ◦Km) is an arbitrary k-dominating set
of Cn ◦ Km, then by similar way is done in the previous result, it can be
shown that any k-dominating set in Cn ◦ Km has cardinality greater than
nm, it follows that if k = m + 1, then γk(Cn ◦Km) = nm + γ1(Cn), also, if
k = m+ 2, then γk(Cn ◦Km) = nm+ γ2(Cn). □

4. Conclusion
This paper considered the partition dimension of cocktail party graph

CP (m + 1) and corona product G ◦ Km. Also the k-domination numbers
of CP (m+ 1) and corona product Cn ◦Km has computed for some cases.
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THE PARTITION DIMENSION AND k-DOMINATION NUMBER OF

TWO SPECIFIC GRAPHS

A. ZAFARI AND S. ALIKHANI

خاص گراف های از نوع دو k- احاطه گری عدد و افرازی بعد

علیخانی٢ سعید و ظفری١ علی

ایران تهران، پیام نور، دانشگاه علوم پایه، دانشکده ریاضی، ١گروه

ایران یزد، یزد، دانشگاه ریاضی، علوم ٢دانشکده

رأس یک و G همبند گراف یک رئوس مجموعه از Ω = {S١, S٢, ..., Sk} مرتب افراز −k یک برای
تایی −k به صورت Ω به نسبت v نمایش ،G از v

r(v|Ω) = (d(v, S١), d(v, S٢), ..., d(v, Sk)),

متمایز رأس دو هر برای هرگاه می شود، نامیده G گراف برای تفکیک کننده افراز یک Ω افراز باشد. می
با را G گراف در تفکیک کننده افراز کوچک ترین اندازه .r(u|Ω) ̸= r(v|Ω) ،G گراف از v و u
هرگاه می نامند، G در احاطه گر −k مجموعه یک را D ⊆ V (G) زیرمجموعه می دهند. نشان pd(G)

در احاطه گر −k مجموعه کوچک ترین اندازه باشد. مجاور D از رأس k حداقل با V (G) \D رأس هر
و CP (m+ ١) کوکتل مهمانی گراف افرازی بعد مقاله، این در می دهند. نشان γk(G) با را G گراف
CP (m+ ١) گراف های احاطه گر −k اعداد به علاوه، می کنیم. تعیین را G ◦Km کرونا حاصل ضرب

می کنیم. محاسبه را Cn ◦Km و

حاصل ضرب کوکتل، مهمانی گراف احاطه گر، عدد افراز، بعد تفکیک کننده، مجموعه کلیدی: کلمات
کرونا.
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