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CLASSIFICATION OF MONOIDS BY CONDITION (GPWPsec) OF RIGHT
ACTS

M. Shafiei, H. Mohammadzadeh Saany∗ and P. Rezaei

Abstract. In (Categories and General Algebraic Structures with Applications,
12(1):175-197 (2020)), Rashidi et al. introduced GPW-flatness of acts over monoids
as a generalization of principal weak flatness. In this paper, we introduce Condition
(GPWPsec) of acts over monoids and compare it with GPW-flatness. Also, we obtain
some general properties of Condition (GPWPsec) and characterize those monoids for
which this condition implies some other properties and vice versa.

1. Introduction
Throughout this paper, we use S to denote a monoid. We refer the reader to

[6, 8] for the basic results, definitions and terminology related to semigroups
and acts over monoids, and to [9, 10] for those definitions and results on
flatness which are used in the paper.
We say that S is right (left) reversible if for every s, s′ ∈ S, there exist

u, v ∈ S such that us = vs′(su = s′v). A right ideal K of S is called left
stabilizing if for every k ∈ K, there exists l ∈ K such that lk = k.
An element s of S is called right e-cancellable, for an idempotent e ∈ S, if

s = es and kerρs ≤ kerρe, that is, ts = t′s, t, t′ ∈ S, implies te = t′e. Also,
S is called left PP if every s ∈ S is right e-cancellable, for some idempotent
e ∈ S.
It is easy to see that S is left PP if and only if for every s ∈ S, there

exists e ∈ E(S) such that kerρs = kerρe. This is equivalent to the condition
that every principal left ideal of S is projective. Right PP monoids can be
defined similarly. An element s of S is called right semi-cancellative if ts = t′s,
t, t′ ∈ S, implies the existence of r ∈ S such that s = rs and tr = t′r. We say
that S is left PSF if all principal left ideals of S are strongly flat. It is easy
to see that S is left PSF if and only if every s ∈ S is right semi-cancellable.
An element s of S is called regular if sxs = s for some x ∈ S. We say that

S is regular if all its elements are regular. An element s of S is called left
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almost regular if there exist r, r1, ..., rm, s1, ..., sm ∈ S and right cancellable
c1, c2, ..., cm ∈ S such that

s1c1 = sr1

s2c2 = s1r2
...

smcm = sm−1rm

s = smrs.

If all elements of S are left almost regular, then S is called left almost
regular. It can be seen that every left almost regular monoid is left PP [8,
Proposition 4.1.3].
A right S-act is a non-empty set A, usually denoted by AS, on which S acts

unitarian from the right, that is, (as)t = a(st) and a1 = a for every a ∈ A
and s, t ∈ S, where 1 is the identity of S.
We recall the following definitions from [2, 9, 10].
• An S-act AS is weakly pullback flat (WPF) if the corresponding ϕ is
bijective for every pullback diagram P (S, S, f, g, S).

• An S-act AS is weakly kernel flat (WKF) if the corresponding ϕ is
bijective for every pullback diagram P (I, I, f, f, S), where I is a left
ideal of S.

• An S-act AS is principally weakly kernel flat (PWKF) if for every
pullback diagram P (Ss, Ss, f, f, S) with s ∈ S, the corresponding ϕ is
bijective.

• An S-act AS is translation kernel flat (TKF) if the corresponding ϕ is
bijective for every pullback diagram P (S, S, f, f, S).

• An S-act AS is weakly homoflat (WP) if for all s, t ∈ S, every homomor-
phism f : S(Ss ∪ St) → SS and all a, a′ ∈ AS, if af(s) = a′f(t), then
there exist a′′ ∈ AS, u, v ∈ S and s′, t′ ∈ {s, t} such that a⊗s = a′′⊗us′
and a′ ⊗ t = a′′ ⊗ vt′ in A⊗S (Ss ∪ St) and f(us′) = f(vt′).

• An S-act AS is principally weakly homoflat (PWP) if as = a′s for
a, a′ ∈ AS and s ∈ S implies the existence of a′′ ∈ AS and u, v ∈ S
such that a = a′′u, a′ = a′′v and us = vs.

2. Main results
In this section, we introduce Condition (GPWPsec) and present some of its

general properties.
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Definition 2.1. A monoid S is called eventually left PP if for every s ∈ S,
a natural number n ∈ N exists such that sn is right e-cancellable for some
e ∈ E(S). Equivalently, S is called eventually left PP if for every s ∈ S, a
natural number n ∈ N can be found such that the principal left ideal Ssn is
projective.
It is clear that every left PP monoid is eventually left PP . The following

example shows that the converse of this assertion is not true.
Example 2.2. Let S = {0, a, b, c} be the monoid with the following table.

0 a b c
0 0 0 0 0
a 0 a b c
b 0 b 0 b
c 0 c b a

It is clear that S is a commutative monoid. Also, S is not left PP , but it is
eventually left PP .
Definition 2.3. An S-act AS is strongly e-cancellative-(GPWP ) (or satisfies
Condition (GPWPsec)) if for every s ∈ S, there exists n ∈ N such that for
every a, a′ ∈ AS,

asn = a′sn ⇒ (∃e ∈ E(S))(ae = a′e, esn = sn).

Now, we establish some general properties.
Proposition 2.4. The following statements are true.

(1) ΘS satisfies Condition (GPWPsec).
(2) If AS satisfies Condition (GPWPsec), then every subact of AS satisfies

the same condition.
(3) Any retract of a right S-act satisfying Condition (GPWPsec) also sat-

isfies Condition (GPWPsec).
(4) If A =

⨿
i∈I Ai, where each Ai is a right S-act, satisfies Condition

(GPWPsec), then Ai satisfies Condition (GPWPsec) for every i ∈ I.
Proof. (1), (2) and (4) are obvious.
(3). Suppose that a right S-act BS satisfies Condition (GPWPsec) and

s ∈ S. Then, according to our definition of (GPWPsec), there exists
n ∈ N. Also, assume that AS is a retract of BS. Then, there exist ho-
momorphisms f : BS → AS and f ′ : AS → BS such that ff ′ = idAS

. Let
asn = a′sn for a, a′ ∈ AS. Then f ′(asn) = f ′(a′sn) and so, f ′(a)sn = f ′(a′)sn.
Since f ′(a), f ′(a′) ∈ BS and BS satisfies Condition (GPWPsec), there exists
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e ∈ E(S) such that f ′(a)e = f ′(a′)e and esn = sn. Now, we obtain
f(f ′(ae)) = f(f ′(a′e)). This means that AS satisfies Condition (GPWPsec).

□

A right S-act AS is called GPW -flat if for every s ∈ S, there exists
n = n(s,AS) ∈ N such that for every a, a′ ∈ AS, asn = a′sn implies
a⊗ sn = a′ ⊗ sn in A⊗S (Ssn) (see [11]).

Proposition 2.5. The following statements are true.
(1) Every right act satisfying Condition (GPWPsec) is GPW -flat.
(2) If S is eventually left PP , then every GPW -flat right act satisfies

Condition (GPWPsec).

Proof. (1). Suppose that AS satisfies Condition (GPWPsec) and s ∈ S. Then,
there exists n ∈ N. Let asn = a′sn, for a, a′ ∈ AS. By the assumption,
e ∈ E(S) exists such that esn = sn and ae = a′e. Thus,

a⊗ sn = a⊗ esn = ae⊗ sn = a′e⊗ sn = a′ ⊗ esn = a′ ⊗ sn

in A⊗S Ss
n. Hence, AS is GPW -flat.

(2). Let S be eventually left PP . Then, n ∈ N exists such that sn is right
e-cancellable for some e ∈ E(S). Also, assume that AS is a GPW -flat right
S-act and s ∈ S. Let asn = a′sn for a, a′ ∈ AS. By [11, Proposition 2.3],

a = a1s1

a1t1 = a2s2 s1s
n = t1s

n

a2t2 = a3s3 s2s
n = t2s

n

... ...
aktk = a′ sks

n = tks
n,

for k ∈ N, a1, ..., ak ∈ AS and s1, t1, ..., sk, tk ∈ S. Since sn is right e-
cancellable,

a = a1s1

a1t1 = a2s2 s1e = t1e

a2t2 = a3s3 s2e = t2e

a2t2 = a3s3 s2e = t2e

... ...
aktk = a′ ske = tke.
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Therefore, ae = a1s1e = a1t1e = a2s2e = a2t2e = · · · = aktke = a′e and
esn = sn. □
Proposition 2.6. For any family {Ai}i∈I of right S-acts, if

∏
i∈I Ai satis-

fies Condition (GPWPsec), then Ai satisfies Condition (GPWPsec) for every
i ∈ I.

Proof. Let s ∈ S and i ∈ I. By our assumption, n ∈ N exists such that
asn = a′sn, for a, a′ ∈

∏
i∈I Ai, implies ae = a′e and esn = sn for some

e ∈ E(S). Let aisn = a′is
n for every ai, a′i ∈ Ai. Consider a fixed element

ak ∈ Ak for every k ̸= i and let

ck =

{
ai if k = i
ak if k ̸= i

,

c′k =

{
a′i if k = i
ak if k ̸= i

.

Then (ck)Is
n = (c′k)Is

n. Hence, the assumption allows us to write
(ck)Ie = (c′k)Ie and esn = sn, for e ∈ E(S). Now aie = a′ie and hence,
Ai satisfies Condition (GPWPsec). □
Lemma 2.7. Let E(S) ⊆ C(S), where C(S) is the center of S. Also, assume
that AS is a right S-act, s ∈ S and n ∈ N exists such that asn = a′sn,
a, a′ ∈ AS, implies the existence of f ∈ E(S) satisfying af = a′f and
fsn = sn. Let m ∈ N and m > n. If asm = a′sm, then ae = a′e and
esm = sm for some e ∈ E(S).

Proof. Sincem > n, there exists k ∈ N such that kn ≤ m < (k+1)n. Suppose
that asm = a′sm, for a, a′ ∈ AS. Then, (as(m−n))sn = (a′s(m−n))sn. By the
assumption, e1 ∈ E(S) exists such that as(m−n)e1 = a′s(m−n)e1 and e1sn = sn.
By the equality e1sn = sn we obtain e1sm = sm. Since E(S) ⊆ C(S), it follows
that ae1s(m−n) = a′e1s

(m−n) and so,
(ae1s

(m−2n))sn = (a′e1s
(m−2n))sn.

Again, the assumption implies the existence of e2 ∈ E(S) such that
ae1s

(m−2n)e2 = a′e1s
(m−2n)e2

and e2sn = sn, and allows us to write as(m−2n)e1e2 = a′s(m−2n)e1e2. Thus, by
the equality e2sn = sn we obtain e2sm = sm and so, e1e2sm = sm. Continuing
this procedure, we find e1, e2, ..., ek ∈ E(S) such that

as(m−kn)e1e2...ek = a′s(m−kn)e1e2...ek and e1e2...eksm = sm.



348 SHAFIEI, MOHAMMADZADEH SAANY AND REZAEI

Now, we may consider two cases.
Case 1. If m = kn, then we deduce from

as(m−kn)e1e2...ek = a′s(m−kn)e1e2...ek

that ae1e2...ek = a′e1e2...ek. Let e = e1e2...ek. Then ae = a′e and esm = sm,
and we are done.
Case 2. If m ̸= kn, then multiplying the equality

ae1e2...eks
(m−kn) = a′e1e2...eks

(m−kn)

by s(k+1)n−m we obtain

ae1e2...eks
n = a′e1e2...eks

n

and so, ek+1 ∈ E(S) exists such that

ae1e2...ekek+1 = a′e1e2...ekek+1

and ek+1s
n = sn. From the equality ek+1s

n = sn it follows that ek+1s
m = sm.

Also, e1e2...ek+1s
m = sm. Let e = e1e2...ekek+1. Then ae = a′e and esm = sm,

and so, we are done. □

Proposition 2.8. Let E(S) ⊆ C(S). Also, assume that for each 1 ≤ i ≤ m,
Ai is a right S-act. Then,

m∏
i=1

Ai satisfies Condition (GPWPsec) if and only

if Ai satisfies Condition (GPWPsec) for every 1 ≤ i ≤ m.

Proof. Necessity. This is obvious by Proposition 2.6.
Sufficiency. Suppose that Ai satisfies Condition (GPWPsec), for every

1 ≤ i ≤ m, and let s ∈ S. Then, ni ∈ N exists such that aisni = a′is
ni,

for ai, a′i ∈ Ai, implies aie = a′ie and esni = sni for some e ∈ E(S).
Let n = max{n1, n2, ..., nm}. Then (a1, a2, ..., am)s

n = (a′1, a
′
2, ..., a

′
m)s

n for
ai, a

′
i ∈ Ai, 1 ≤ i ≤ m. By Lemma 2.7, the equality a1s

n = a′1s
n implies

the existence of e1 ∈ E(S) such that a1e1 = a′1e1 and e1s
n = sn. There-

fore, the equality a2s
n = a′2s

n implies a2e1sn = a′2e1s
n. Again, by Lemma

2.7, e2 ∈ E(S) exists such that a2e1e2 = a′2e1e2 and e2s
n = sn. There-

fore, a1e1e2 = a′1e1e2, a2e1e2 = a′2e1e2 and e1e2s
n = sn. Continuing this

procedure, after m steps we find e1, e2, ..., em ∈ E(S) such that for each i,
aie1e2...em = a′ie1e2...em, and e1e2...ems

n = sn. Let e = e1e2...em. By the
assumption, e is an idempotent. Thus, aie = a′ie for each i and esn = sn.
Hence (a1, a2, ..., am)e = (a′1, a

′
2, ..., a

′
m)e and esn = sn, as required. □
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Theorem 2.9. Let E(S) be a submonoid of S. Then, SS satisfies Condition
(GPWPsec) if and only if the right S-act Sn

S satisfies Condition (GPWPsec)
for any n ∈ N.

Proof. Necessity. Suppose that SS satisfies Condition (GPWPsec). Let s ∈ S.
Then, n ∈ N exists such that tsn = t′sn, for every t, t′ ∈ S, implies te = t′e
and esn = sn for some e ∈ E(S). If (a1, a2, ..., am)sn = (a′1, a

′
2, ..., a

′
m)s

n for
ai, a

′
i ∈ S and 1 ≤ i ≤ m, then ais

n = a′is
n for any 1 ≤ i ≤ m. By the

assumption, there exists e1 ∈ E(S) such that a1e1 = a′1e1 and e1s
n = sn.

The equalities a2sn = a′2s
n and e1sn = sn imply a2e1sn = a′2e1s

n. Again, by
the assumption, e2 ∈ E(S) exists such that a2e1e2 = a′2e1e2 and e2s

n = sn.
Therefore, a1e1e2 = a′1e1e2, a2e1e2 = a′2e1e2 and e1e2sn = sn. Continuing this
procedure, after m steps we find e1, e2, ..., em ∈ E(S) such that for each i,
aie1e2...em = a′ie1e2...em, and e1e2...emsn = sn. Let e = e1e2...em. Since E(S)
is a submonoid of S, e is an idempotent. Thus, aie = a′ie for each i and
esn = sn. Hence (a1, a2, ..., am)e = (a′1, a

′
2, ..., a

′
m)e and esn = sn, as required.

Sufficiency. If the right S-act Sn satisfies Condition (GPWPsec), then by
Proposition 2.6, SS satisfies Condition (GPWPsec). □

Recall from [1] that for a monoid S, the cartesian product S × S equipped
with the right S-action (s, t)u = (su, tu), s, t, u ∈ S, is called the diagonal
act of S, which is denoted by D(S).
In the following theorem, we obtain equivalent conditions for Sn

S to satisfy
Condition (GPWPsec).

Theorem 2.10. Let E(S) be a submonoid of S. The following statements
are equivalent.

(1) For any n ∈ N, Sn
S satisfies Condition (GPWPsec).

(2) There exists m ∈ N such that Sm
S satisfies Condition (GPWPsec).

(3) D(S) satisfies Condition (GPWPsec).
(4) SS satisfies Condition (GPWPsec).

Proof. The implications (1) ⇒ (2) and (1) ⇒ (3) are obvious.
(2) ⇒ (4). Define ψ : SS → Sm

S by ψ(s) = (s, s, ..., s). It is obvious
that ψ is a monomorphism. Thus SS

∼= Imψ ≤ Sm
S and so, by part (2)

of Proposition 2.4, Imψ satisfies Condition (GPWPsec). Hence SS satisfies
Condition (GPWPsec).
(3) ⇒ (4). This easily follows from the proof of (2) ⇒ (4).
(4) ⇒ (1). By Theorem 2.9, the proof is straightforward. □



350 SHAFIEI, MOHAMMADZADEH SAANY AND REZAEI

Definition 2.11. A right ideal K of S is called GPW -left stabilizing if for
every s ∈ S, there exists n ∈ N such that lsn ∈ K, for l ∈ S \ K, implies
lsn = ksn for some k ∈ K.

It is clear that every left stabilizing right ideal of S is GPW -left stabilizing.

Theorem 2.12. Let K be a proper right ideal of S. Then, the following
statements are true.

(1) If AS = S
K⨿
S satisfies Condition (GPWPsec), then K is GPW -left

stabilizing and SS satisfies Condition (GPWPsec).
(2) If K is GPW -left stabilizing and S is eventually left PP , then

AS = S
K⨿
S satisfies Condition (GPWPsec).

Proof. (1). By part (1) of Theorem 2.5, AS = S
K⨿
S is GPW -flat and so,

by [11, Theorem 2.10], K is GPW -left stabilizing. On the other hand,

AS = S
K⨿
S = BS ∪ CS, where BS = {(l, x)|l ∈ S \K}

·
∪K,

CS = {(t, y)|t ∈ S \K}
·
∪K,

BS, CS ≤ AS and BS
∼= SS

∼= CS. By part (2) of Theorem 2.4, BS satisfies
Condition (GPWPsec). Therefore, by the isomorphism BS

∼= SS, SS satisfies
Condition (GPWPsec).
(2). Since K is GPW -left stabilizing, it follows from [11, Theorem 2.10]

that AS = S
K⨿
S is GPW -flat. On the other hand, since S is eventually left

PP , GPW -flatness and Condition (GPWPsec) are equivalent by part (2) of

Theorem 2.5. Hence, AS = S
K⨿
S satisfies Condition (GPWPsec). □

Every right cancellative monoid is left PP , and accordingly, eventually left
PP . But, it is clear that no proper ideal of such a monoid can be GPW -left
stabilizing.

Example 2.13. It is clear that S = (N, .) is a commutative and cancellative
monoid, and K = N\{1} is one of its ideals that is not GPW -left stabilizing.

The following result was obtained by Golchin in [3]. Let S = G
·
∪ I, where

G is a group and I is an ideal of S, and assume that A is a right S-act that is
((principally) weakly) flat, torsion free, and satisfies Condition (P ) or (PE)
as a right I1-act. Then, it satisfies the same properties as a right S-act.
Similarly, we establish the following theorem for Condition (GPWPsec).
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Theorem 2.14. Let S = G
·
∪ I, and A be a right S-act. Then, A satisfies

Condition (GPWPsec) as a right I1-act if and only if it satisfies Condition
(GPWPsec) as a right S-act.

Proof. Necessity. Suppose that A satisfies Condition (GPWPsec) as a right
I1-act and s ∈ S. Then, we may consider two cases.
Case 1. s ∈ G. Then Ss = S and so, for every n ∈ N, Ssn = Ss = S.

If as = a′s for a, a′ ∈ A, then a = a′. By putting e = 1, the desired result
follows.
Case 2. s ∈ I ⊆ I1. Since A satisfies Condition (GPWPsec) as a right I1-

act, there exists a natural number n ∈ N such that for a, a′ ∈ A, asn = a′sn

implies ae = a′e and esn = sn, for e ∈ E(I1) ⊆ E(S).
Therefore, by cases 1 and 2, A satisfies Condition (GPWPsec) as a right

S-act.
Sufficiency. Suppose that A satisfies Condition (GPWPsec) as a right S-

act. Since E(S) = E(I) ∪ {1} = E(I1), A satisfies Condition (GPWPsec) as
a right I1-act. □

Corollary 2.15. Let S = G
·
∪ I, where G is a group and I is an ideal of S.

If all right I1-acts satisfy Condition (GPWPsec), then all right S-acts satisfy
Condition (GPWPsec).

Here, we present a criterion that allows us to determine whether a cyclic
right S-act satisfies Condition (GPWPsec).

Proposition 2.16. Let ρ be a right congruence on S. Then, the right S-act
S/ρ satisfies Condition (GPWPsec) if and only if for every s ∈ S, there exists
n ∈ N such that for x, y ∈ S, (xsn)ρ(ysn) implies (xe)ρ(ye) and esn = sn for
some e ∈ E(S).

Proof. By Definition 2.3, the proof is straightforward. □
Corollary 2.17. For a monoid S, the principal right ideal zS satisfies Con-
dition (GPWPsec)  if and only if for every s ∈ S, there exists n ∈ N such that
for every x, y ∈ S, zxsn = zysn implies zxe = zye and esn = sn for some
e ∈ E(S).

Proof. Since zS ∼= S/kerλz, we just need to apply Proposition 2.16 with
ρ = kerλz. □
Now, we present a characterization of Rees factor S-acts that satisfy Con-

dition (GPWPsec).
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Proposition 2.18. Let K be a right ideal of S. The right Rees factor S-act
S/K satisfies Condition (GPWPsec) if and only if for every s ∈ S, a natural
number n ∈ N exists such that,

(∀x, y ∈ S)[((xsn = ysn ∈ S \K) ∨ (xsn, ysn ∈ K))

⇒ (∃e ∈ E(S))(esn = sn ∧ (xe = ye ∨ (xe, ye ∈ K)))].

Proof. Necessity. Suppose that the right Rees factor S-act S/K satisfies
Condition (GPWPsec) and s ∈ S. Then, a natural number n ∈ N exists such
that Proposition 2.16 is satisfied. Let xsn = ysn ∈ S \K or xsn, ysn ∈ K, for
x, y ∈ S. Then (xsn)ρK(ys

n) and by Proposition 2.16, there exists e ∈ E(S)
such that (xe)ρK(ye) and esn = sn. Hence xe = ye or xe, ye ∈ K, as required.
Sufficiency. Note that if K = S, then by Proposition 2.4, S/K ∼= ΘS

satisfies Condition (GPWPsec). Assume that K is a proper right ideal of S
and s ∈ S. By the assumption, a natural number n ∈ N exists such the
condition is satisfied. Let (xsn)ρK(ys

n) for x, y ∈ S. Then, xsn, ysn ∈ K
or xsn = ysn. By the condition, there exists e ∈ E(S) such that esn = sn

and (xe)ρK(ye). Therefore, by Proposition 2.16, S/K satisfies Condition
(GPWPsec), as required. □
In the following example, we show that the converse of part (1) of Propo-

sition 2.5 is not true in general.

Example 2.19. Let (I,≤) be a totally ordered set with no successor for each
element (as R). Consider the commutative monoid

S = {xim|i ∈ I,m ∈ N} ∪ {1} ∪ {0},
in which

xi
mxj

n =

{
xj

n if i < j
xi

m+n if i = j
.

It is easy to prove that S is PSF . Since S does not have any idempotent
except 0, 1, it is not left PP . Now, let K = 0S = {0}. Then S/K ∼= SS is
free, and so it is GPW -flat. But since 0, 1 are only idempotent elements of
S, S/K ∼= SS dose not satisfy Condition (GPWPsec).

3. Classification by Condition (GPWPsec) of Right Acts
In this section, we present a classification of monoids when acts with other

properties satisfy Condition (GPWPsec) and vice versa. We also provide a
classification of monoids when all their acts satisfy Condition (GPWPsec).
Recall from [11] that s ∈ S is called eventually regular if sn is regular for

some n ∈ N. This means that sn = snxsn for some n ∈ N and x ∈ S. We say
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that S is eventually regular if every s ∈ S is eventually regular. Obviously,
every regular monoid is eventually regular. But, the converse is not true in
general.
An element s of S is called eventually left almost regular if

s1c1 = snr1

s2c2 = s1r2
...

smcm = sm−1rm

sn = smrs
n,

for some n ∈ N, s1, s2, ..., sm, r, r1, ..., rm ∈ S and right cancellable
c1, c2, ..., cm ∈ S. In other words, s ∈ S is called eventually left almost
regular if sn is left almost regular for some n ∈ N.
If every element of S is eventually left almost regular, then S is called even-

tually left almost regular. It is clear that every left almost regular monoid is
eventually left almost regular, and every eventually regular monoid is even-
tually left almost regular.

Lemma 3.1. Every eventually left almost regular monoid is eventually left
PP .

Proof. Let S be eventually left almost regular and s ∈ S. By the definition,
s1c1 = snr1

s2c2 = s1r2
...

smcm = sm−1rm

sn = smrs
n,

for some n ∈ N, s1, s2, ..., sm, r, r1, ..., rm ∈ S and right cancellable
c1, c2, ..., cm ∈ S. Hence, we conclude that

snr1 = smrs
nr1 ⇒ s1c1 = smrs1c1 ⇒ s1 = smrs1 ⇒ s1r2 = smrs1r2

⇒ s2c2 = smrs2c2 ⇒ s2 = smrs2.

Continuing this procedure, we finally obtain si = smrsi for every 1 ≤ i ≤ m,
which implies sm = smrsm. Hence, e = smr is an idempotent such that
esn = sn.
Now, let l1sn = l2s

n for l1, l2 ∈ S. Then,
l1s

nr1 = l2s
nr1 ⇒ l1s1c1 = l2s1c1 ⇒ l1s1 = l2s1 ⇒ l1s1r2 = l2s1r2
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⇒ l1s2c2 = l2s2c2 ⇒ l1s2 = l2s2.

Continuing this procedure, we obtain l1si = l2si for every 1 ≤ i ≤ m. Thus

l1sm = l2sm ⇒ l1smr = l2smr ⇒ l1e = l2e

and so, S is eventually left PP . □

An element a of AS is called divisible by s ∈ S if b ∈ AS exists such that
bs = a. An act AS is said to be divisible if Ac = A, for any left cancellable
element c of S. It is clear that AS is divisible if and only if every element of
AS is divisible by any left cancellable element of S.

Theorem 3.2. The following statements are equivalent.
(1) All right S-acts satisfy Condition (GPWPsec).
(2) All cyclic right S-acts satisfy Condition (GPWPsec).
(3) All right Rees factor acts of S satisfy Condition (GPWPsec).
(4) All divisible right S-acts satisfy Condition (GPWPsec).
(5) All principally weakly injective right S-acts satisfy Condition (GPWPsec).
(6) All fg-weakly injective right S-acts satisfy Condition (GPWPsec).
(7) All weakly injective right S-acts satisfy Condition (GPWPsec).
(8) All injective right S-acts satisfy Condition (GPWPsec).
(9) All cofree right S-acts satisfy Condition (GPWPsec).

(10) S is eventually regular.

Proof. The implications (1) ⇒ (2) ⇒ (3) are obvious.
Since cofree ⇒ injective ⇒ weakly injective ⇒ fg-weakly injective ⇒ prin-

cipally weakly injective ⇒ divisible, we immediately obtain the implications
(1) ⇒ (4) ⇒ (5) ⇒ (6) ⇒ (7) ⇒ (8) ⇒ (9).
(3) ⇒ (10). By part (1) of Proposition 2.5, all right Rees factor acts of S

are GPW -flat. It follows from [11, Theorem 4.5] that S is eventually regular.
(9) ⇒ (10). Since every right S-act can be embedded into a cofree right S-

act, by the assumption, every right S-act is a subact of a right S-act satisfying
Condition (GPWPsec). By part (2) of Proposition 2.4, all right S-acts satisfy
Condition (GPWPsec). It follows from Proposition 2.5 that all right S-acts
are GPW -flat. Thus, by [11, Theorem 4.5], S is eventually regular.
(10) ⇒ (1). By [11, Theorem 4.5], all right S-acts are GPW -flat. Since

every eventually regular monoid is eventually left almost regular, and by
Lemma 3.1, every eventually left almost regular monoid is eventually left
PP , part (2) of Proposition 2.5 shows that all right S-acts satisfy Condition
(GPWPsec). □
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A monoid S is called right (left) generally regular if for every s ∈ S, there
exist n ∈ N and x ∈ S such that sn = sxsn (sn = snxs).
A monoid S for which all (GPWPsec) right S-acts are divisible is not nec-

essarily eventually regular. This is the content of the following example.

Example 3.3. Let S = N ∪ G, where N is the set of natural numbers and
G is a non-trivial group with unit element e, and define the multiplication
on S by ng = gn = n for every g ∈ G and n ∈ N. Clearly, every left(right)
cancellative element of S is left(right) invertible. Thus, all right S-acts are
divisible by [11, Theorem 4.8]. Therefore, all (GPWPsec) right S-acts are
divisible. But, S is not right generally regular, and hence is not eventually
regular.

Theorem 3.4. Suppose that (U) is a property of S-acts which implies Con-
dition (PWP ), and SS satisfies the property (U). Then, the following state-
ments are equivalent.

(1) All right S-acts satisfying the property (U) also satisfy Condition
(GPWPsec).

(2) All finitely generated right S-acts satisfying the property (U) also satisfy
Condition (GPWPsec).

(3) All cyclic right S-acts satisfying the property (U) also satisfy Condition
(GPWPsec).

(4) SS satisfies Condition (GPWPsec).

Proof. The implications (1) ⇒ (2) ⇒ (3) are obvious.
(3) ⇒ (4). Since SS is a cyclic act satisfying the property (U), by the

assumption, SS satisfies Condition (GPWPsec).
(4) ⇒ (1). Suppose that AS is a right S-act satisfying the property (U).

Let s ∈ S. By the assumption, there exists n ∈ N such that,

(∀x, y ∈ S)(xsn = ysn) ⇒ (∃e ∈ E(S))(xe = ye ∧ esn = sn).

Let asn = a′sn, for a, a′ ∈ AS. Since AS satisfies Condition (PWP ), there
exist a′′ ∈ AS and u, v ∈ S such that a = a′′u, a′ = a′′v and usn = vsn.
Therefore, we find e ∈ E(S) such that ue = ve and esn = sn. Thus
ae = a′′ue = a′′ve = a′e and so, AS satisfies Condition (GPWPsec). □
Note that the property (U) in the above theorem can be any property like

the properties of being free, projective, projective generator, strongly flat,
WPF , WKF , PWKF , TKF , (WP ), and also Condition (P ), Condition
(P ′) and Condition (PWP ).
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Theorem 3.5. The following statements are equivalent.
(1) All right S-acts satisfy Condition (GPWPsec).
(2) All generator right S-acts satisfy Condition (GPWPsec).
(3) S × AS satisfies Condition (GPWPsec) for every right S-act AS.
(4) S ×AS satisfies Condition (GPWPsec) for every generator right S-act

AS.
(5) AS satisfies Condition (GPWPsec) if Hom(AS, SS) ̸= ∅.
(6) S is eventually regular.

Proof. The implications (1) ⇒ (2), (3) ⇒ (4) and (1) ⇒ (5) are obvious.
(1) ⇔ (6). This follows from Theorem 3.2.
(2) ⇒ (3). Suppose that AS is a right S-act. Indeed, the mapping

π : S × AS → SS, where π(s, a) = s for a ∈ AS and s ∈ S, is an epi-
morphism in Act− S. Then, by [8, Theorem 2.3.16], S × AS is a generator.
Thus, by the assumption, S × AS satisfies Condition (GPWPsec).
(3) ⇒ (1). This statement immediately follows from Proposition 2.6.
(4) ⇒ (3). Suppose that AS is a right S-act. By the proof of (2) ⇒ (3),

S × AS is a generator right S-act and so, by the assumption, S × (S × AS)
satisfies Condition (GPWPsec). Then, Proposition 2.6 shows that S × AS

satisfies Condition (GPWPsec).
(5) ⇒ (3). Suppose that AS is a right S-act. By the proof of (2) ⇒ (3),

π : S×AS → SS, where π(s, a) = s for a ∈ AS and s ∈ S, is an epimorphism
in Act − S. Then, Hom(S × AS, SS) ̸= ∅. Thus, S × AS satisfies Condition
(GPWPsec) by the assumption. □
Theorem 3.6. The following statements are equivalent.

(1) All torsion free right S-acts satisfy Condition (GPWPsec).
(2) All torsion free finitely generated right S-acts satisfy Condition

(GPWPsec).
(3) All torsion free cyclic right S-acts satisfy Condition (GPWPsec).
(4) All torsion free right Rees factor acts of S satisfy Condition

(GPWPsec).
(5) S is eventually left almost regular.

Proof. The implications (1) ⇒ (2) ⇒ (3) ⇒ (4) are obvious.
(4) ⇒ (5). By part (1) of Proposition 2.5, all torsion free right Rees factor

acts of S are GPW -flat. It follows from [11, Theorem 4.4] that S is eventually
left almost regular.
(5) ⇒ (1). By [11, Theorem 4.4], all torsion free right S-acts are GPW -

flat. On the other hand, by Lemma 3.1, every eventually left almost regular
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monoid is eventually left PP . So, by part (2) of Proposition 2.5, all torsion
free right S-acts satisfy Condition (GPWPsec). □
The following example shows that Condition (GPWPsec) does not imply

Condition PWF .
Example 3.7. Let S={0, 1, e, f, a} be the monoid with the following table.

0 1 e f a
0 0 0 0 0 0
1 0 1 e f a
e 0 e e a a
f 0 f 0 f 0
a 0 a 0 a 0

As shown by Rashidi in [11, Example 4.3], S is eventually left almost regu-
lar, but fails to be left almost regular. Therefore, by Theorem 3.6, all torsion
free right S-acts satisfy Condition (GPWPsec), but by [8, Theorem 4.6.5],
a torsion free right Rees factor S-act exists that does not satisfy Condition
PWF .
Recall from [12] that a right S-act AS is called R-torsion free if for every

a, b ∈ AS and for any right cancellable c ∈ S, ac = bc and aRb imply a = b,
where R is a Green relation, in the sense that for a, b ∈ AS, aRb if and only
if aS = bS.
Theorem 3.8. The following statements are equivalent.

(1) All R-torsion free right S-acts satisfy Condition (GPWPsec).
(2) All R-torsion free finitely generated right S-acts satisfy Condition

(GPWPsec).
(3) All R-torsion free right S-acts generated by at most two elements satisfy

Condition (GPWPsec).
(4) S is eventually regular.

Proof. The implications (1) ⇒ (2) ⇒ (3) are obvious.
(3) ⇒ (4). Let s ∈ S. Since SS is R-torsion free, by assumption it satisfies

Condition (GPWPsec). Then, there exists n ∈ N such that,
(∀t, t′ ∈ S)(tsn = t′sn) ⇒ (∃e ∈ E(S))(te = t′e ∧ esn = sn).

If snS = S, then x ∈ S exists such that snx = 1 and so, snxsn = sn. Thus, s
is an eventually regular element. Now, assume that snS ̸= S. Set

AS = S
snS⨿
S = {(l, x)|l ∈ S \ snS}

·
∪ snS

·
∪ {(t, y)|t ∈ S \ snS}.
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Indeed,

BS = {(l, x)|l ∈ S \ snS}
·
∪ snS ∼= SS

∼= {(t, y)|t ∈ S \ snS}
·
∪ snS = CS.

Since AS = BS∪CS, AS is generated by two different elements, namely, (1, x)
and (1, y). By the above isomorphism, BS and CS satisfy Condition (E) and
so, AS satisfies Condition (E). By [12, Proposition 1.2], AS is R-torsion free
and so, by the assumption, AS satisfies Condition (GPWPsec). Therefore,
the equality (1, x)sn = (1, y)sn implies the existence of e ∈ E(S) such that
esn = sn and (1, x)e = (1, y)e. The last equality implies that e ∈ snS and so,
x ∈ S exists such that e = snx. Therefore, sn = esn = snxsn. Hence, S is
eventually regular.
(4) ⇒ (1). The desired result follows from Theorem 3.2. □
Recall from [4, 5, 9] that a right S-act AS satisfies Condition (E ′) if as = as′

and sz = s′z, for a ∈ AS and s, s′, z ∈ S, imply the existence of a′ ∈ A and
u ∈ S such that a = a′u and us = us′. A right S-act AS satisfies Condition
(EP ) if as = at, for a ∈ AS and s, t ∈ S, implies the existence of a′ ∈ AS and
u, v ∈ S such that a = a′u = a′v and us = vt. Also, we say that AS satisfies
Condition (E ′P ) if as = at and sz = tz, for a ∈ AS and s, t, z ∈ S, imply the
existence of a′ ∈ AS and u, v ∈ S such that a = a′u = a′v and us = vt. It is
obvious that (P ) ⇒ (EP ) ⇒ (E ′P ), (E) ⇒ (E ′) ⇒ (E ′P ), (E) ⇒ (EP ) and
(P ) ⇒ (P ′) ⇒ (E ′P ).

Theorem 3.9. The following statements are equivalent.
(1) All right S-acts satisfy Condition (GPWPsec).
(2) All right S-acts satisfying Condition (E ′P ) also satisfy Condition

(GPWPsec).
(3) All right S-acts satisfying Condition (EP ) also satisfy Condition

(GPWPsec).
(4) All right S-acts satisfying Condition (E ′) also satisfy Condition

(GPWPsec).
(5) All right S-acts satisfying Condition (E) also satisfy Condition

(GPWPsec).
(6) S is eventually regular.

Proof. Since (E) ⇒ (EP ) ⇒ (E ′P ) and (E) ⇒ (E ′) ⇒ (E ′P ), the implica-
tions (1) ⇒ (2) ⇒ (3) ⇒ (5) and (1) ⇒ (4) ⇒ (5) are obvious.
(5) ⇒ (6). Since SS satisfies Condition (E), the result can be obtained

similar to Theorem 3.8.
(6) ⇒ (1). This follows from Theorem 3.2. □
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Similar to Theorem 3.8, it follows that Theorem 3.9 is true for finitely
generated right S-acts and right S-acts generated by at most two elements.
We recall from [8] that a right S-act AS is (strongly) faithful if for s, t ∈ S,

the validity of as = at for (some) all a ∈ A implies the equality s = t.

Theorem 3.10. The following statements are equivalent.
(1) All right S-acts satisfy Condition (GPWPsec).
(2) All faithful right S-acts satisfy Condition (GPWPsec).
(3) All finitely generated faithful right S-acts satisfy Condition

(GPWPsec).
(4) All faithful right S-acts generated by at most two elements satisfy Con-

dition (GPWPsec).
(5) S is eventually regular.

Proof. The implications (1) ⇒ (2) ⇒ (3) ⇒ (4) are obvious.
(4) ⇒ (5). Since SS is faithful, a reasoning similar to the proof of Theorem

3.8 allows us to obtain the desired result.
(5) ⇒ (1). This follows from Theorem 3.2. □

Theorem 3.11. The following statements are equivalent.
(1) All right S-acts satisfy Condition (GPWPsec).
(2) All indecomposable right S-acts satisfy Condition (GPWPsec).
(3) All finitely generated indecomposable right S-acts satisfy Condition

(GPWPsec).
(4) All indecomposable right S-acts generated by at most two elements

satisfy Condition (GPWPsec).
(5) All locally cyclic S-acts satisfy Condition (GPWPsec).
(6) All finitely generated locally cyclic right S-acts satisfy Condition

(GPWPsec).
(7) All locally cyclic right S-acts generated by at most two elements satisfy

Condition (GPWPsec).
(8) S is eventually regular.

Proof. The implications (1) ⇒ (2) ⇒ (3) ⇒ (4) and (1) ⇒ (5) ⇒ (6) ⇒ (7)
are obvious.
(4) ⇒ (8). Since SS is an indecomposable right S-act, S

I⨿
S is also inde-

composable, for every proper right ideal I of S. The desired result follows
from a reasoning similar to the proof of Theorem 3.8.
(7) ⇒ (8). By the assumption, all cyclic right S-acts satisfy Condition

(GPWPsec) and so, S is eventually regular by Theorem 3.2.
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(8) ⇒ (1). The desired result follows from Theorem 3.2.
□

Theorem 3.12. The following statements are equivalent.
(1) All right S-acts satisfying Condition (GPWPsec) are (strongly) faithful.
(2) All finitely generated right S-acts satisfying Condition (GPWPsec) are

(strongly) faithful.
(3) All cyclic right S-acts satisfying Condition (GPWPsec) are

(strongly) faithful.
(4) All right Rees factor acts of S satisfying Condition (GPWPsec) are

(strongly) faithful.
(5) S = {1}.

Proof. The implications (1) ⇒ (2) ⇒ (3) ⇒ (4) are obvious.
(4) ⇒ (5). It follows from part (1) of Proposition 2.4 that S/SS

∼= ΘS

satisfies Condition (GPWPsec). Thus, by the assumption, ΘS is faithful. Let
s, t ∈ S. Then θs = θt implies s = t and so, S = {1}.
(5) ⇒ (1). If S = {1}, then all right S-acts are strongly faithful. This

proves (1). □
Theorem 3.13. The following statements are equivalent.

(1) All right S-acts satisfying Condition (GPWPsec) are (projective-) gen-
erator.

(2) All finitely generated right S-acts satisfying Condition (GPWPsec) are
(projective-) generator.

(3) All cyclic right S-acts satisfying Condition (GPWPsec) are (projective-)
generator.

(4) All right Rees factor acts of S satisfying Condition (GPWPsec) are
(projective-) generator.

(5) S = {1}.
Proof. The implications (1) ⇒ (2) ⇒ (3) ⇒ (4) are obvious.
(4) ⇒ (5). By part (1) of Proposition 2.4, the right Rees factor S-act

S/SS
∼= ΘS satisfies Condition (GPWPsec). Thus, by the assumption, ΘS is

a generator. By [8, Theorem 2.3.16], an epimorphism ϕ : ΘS → SS exists.
Hence, S = {1}.
(5) ⇒ (1). If S = {1}, then any right S-act is a (projective-) generator and

so, the desired result follows. □
Theorem 3.14. The following statements are equivalent.

(1) All right S-acts satisfying Condition (GPWPsec) are free.
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(2) All finitely generated right S-acts satisfying Condition (GPWPsec) are
free.

(3) All cyclic right S-acts satisfying Condition (GPWPsec) are free.
(4) All right Rees factor acts of S satisfying Condition (GPWPsec) are

free.
(5) S = {1}.

Proof. The implications (1) ⇒ (2) ⇒ (3) ⇒ (4) are obvious.
(4) ⇒ (5). By the assumption, any right Rees factor act of S satisfying

Condition (GPWPsec) is a generator. It follows from the previous theorem
that S = {1}.
(5) ⇒ (1). If S = {1}, then all right S-acts are free. This proves (1). □

Theorem 3.15. The following statements are equivalent.
(1) All strongly faithful right S-acts satisfy Condition (GPWPsec).
(2) All finitely generated strongly faithful right S-acts satisfy Condition

(GPWPsec).
(3) All strongly faithful right S-acts generated by at most two elements

satisfy Condition (GPWPsec).
(4) S is not left cancellative or it is eventually regular.

Proof. The implications (1) ⇒ (2) ⇒ (3) are obvious.
(3) ⇒ (4). Let S be left cancellative and s ∈ S. Then, by [7, Lemma 3.7],

SS is strongly faithful. Now, by the assumption, the proof is similar to that
of Theorem 3.8.
(4) ⇒ (1). If S is not left cancellative, then by [7, Lemma 3.7], no strongly

faithful right S-act exists and so, the desired result follows. If S is left
cancellative, then by [7, Lemma 3.7], a strongly faithful right S-act exists.
By the assumption, S is eventually regular. Then, by Theorem 3.2, all right
S-acts satisfy Condition (GPWPsec). □
Theorem 3.16. The following statements are equivalent.

(1) All strongly faithful cyclic right S-acts satisfy Condition
(GPWPsec).

(2) All strongly faithful monocyclic right S-acts satisfy Condition (GPWPsec).
(3) S is not left cancellative or SS satisfies Condition (GPWPsec).

Proof. The implication (1) ⇒ (2) is obvious.
(2) ⇒ (3). Suppose that S is left cancellative. Then, by [7, Lemma 3.7],

SS is strongly faithful. Now, the isomorphisms S/ρ(1, 1) ∼= S/∆S
∼= SS and

the assumption show that SS satisfies Condition (GPWPsec).
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(3) ⇒ (1). Suppose that S is not left cancellative. Then, by [7, Lemma
3.7], no strongly faithful right S-act exists and so, the desired result follows.
Now, let S be left cancellative and hence, SS satisfies Condition (GPWPsec)
by the assumption. If AS = aS is a cyclic strongly faithful right S-act, we
define f : aS → SS by f(as) = s. Then, f is an isomorphism of right S-acts.
Now, by the isomorphism aS ∼= SS, AS satisfies Condition (GPWPsec) and
so, the desired result follows. □

Theorem 3.17. The following statements are equivalent.
(1) At least one strongly faithful cyclic right S-act exists that satisfies Con-

dition (GPWPsec).
(2) At least one strongly faithful monocyclic right S-act exists that satisfies

Condition (GPWPsec).
(3) S is left cancellative and each strongly faithful cyclic right S-act satisfies

Condition (GPWPsec).
(4) S is left cancellative and each strongly faithful monocyclic right S-act

satisfies Condition (GPWPsec).
(5) S is left cancellative and SS satisfies Condition (GPWPsec).

Proof. The implications (2) ⇒ (1) and (3) ⇒ (4) are obvious.
(1) ⇒ (3). By the assumption and [7, Lemma 3.7], S is left cancellative. If

S/ρ is a strongly faithful cyclic right S-act, then ρ = ∆S by [7, Lemma 3.9].
Hence, S/ρ = S/∆S

∼= SS. Then, SS satisfies Condition (GPWPsec). Finally,
each strongly faithful cyclic right S-act satisfies Condition (GPWPsec) by
Theorem 3.16.
(4) ⇒ (5). By Theorem 3.16, the proof is straightforward.
(5) ⇒ (2). Since S is left cancellative, SS is strongly faithful by [7, Lemma

3.7]. Since S/ρ(1, 1) ∼= SS, at least one strongly faithful monocyclic right
S-act exists such that satisfies Condition (GPWPsec). □

Recall from [8] that, if ρ is a right congruence on S and s ∈ S, then by ρs
we denote the right congruence on S defined by

x(ρs)y ⇔ (sx)ρ(sy)

for x, y ∈ S.
If λ is a left congruence on S and s ∈ S, then by sλ we denote the left

congruence on S defined by
x(sλ)y ⇔ (xs)λ(ys)

for x, y ∈ S.
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It is clear that if ρ is a right congruence, then ρs is also a right congruence,
and if λ is a left congruence, then sλ is also a left congruence, for s ∈ S.
Lemma 3.18. Let ρ ∈ Con(SS). Then, the following statements are equiva-
lent.

(1) The cyclic right S-act S/ρ is faithful.
(2) ρ does not contain any left congruence τ on S such that τ ̸= ∆S.
(3)

∩
u∈S ρu = ∆S.

Proof. (1) ⇒ (2). By [8, Proposition 1.5.24], this is obvious.
(2) ⇒ (3). Let σ =

∩
u∈S ρu. Since for each u ∈ S, ρu ∈ Con(SS), it is

clear that σ ∈ Con(SS). Now, we show that σ is a left congruence on S. If
x, y ∈ S, then

(x, y) ∈ σ ⇔ (∀u ∈ S)(x, y) ∈ ρu⇔ (∀u ∈ S)(ux, uy) ∈ ρ.

Now, if l ∈ S, then
(x, y) ∈ σ ⇔ (∀u ∈ S)(ux, uy) ∈ ρ⇒ (∀u ∈ S)(ulx, uly) ∈ ρ

⇒ (∀u ∈ S)(lx, ly) ∈ ρu⇒ (lx, ly) ∈
∩
u∈S

ρu = σ.

Therefore, σ is a left congruence on S and clearly,
∩

u∈S ρu ⊆ ρ. On the other
hand, by the assumption, ρ does not contain any non-trivial left congruence
on S. Hence, σ = ∆S.
(3) ⇒ (1). Suppose that S/ρ is not faithful. Then,

∃x, y ∈ S, x ̸= y, ∀u ∈ S, [u]ρx = [u]ρy ⇒ (∀u ∈ S)(ux, uy) ∈ ρ

⇒ (∀u ∈ S)(x, y) ∈ ρu⇒ (x, y) ∈
∩
u∈S

ρu.

Therefore, σ =
∩

u∈S ρu ̸= ∆S, which is a contradiction by the assumption.
So, S/ρ is faithful. □
Theorem 3.19. The following statements are equivalent.

(1) All faithful cyclic right S-acts satisfy Condition (GPWPsec).
(2) For any ρ ∈ Con(SS), ρ contains non-trivial left congruence τ on S or

the right act S/ρ satisfies Condition (GPWPsec).
(3) For any ρ ∈ Con(SS),

∩
u∈S ρu ̸= ∆S or the cyclic right S-act S/ρ

satisfies Condition (GPWPsec).
Proof. (1) ⇒ (2). Let ρ be a right congruence on S that does not contain
any non-trivial left congruence on S. Then, by Lemma 3.18, S/ρ is faithful
and so, S/ρ satisfies Condition (GPWPsec) by the assumption.
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(2) ⇒ (3). Let ρ be a right congruence on S such that
∩

u∈S ρu = ∆S. Then,
by Lemma 3.18 and the assumption, S/ρ satisfies Condition (GPWPsec).
(3) ⇒ (1). Let ρ be a right congruence on S such that the cyclic right S-act

S/ρ is faithful. Then, by Lemma 3.18,
∩

u∈S ρu = ∆S and so, S/ρ satisfies
Condition (GPWPsec) by the assumption. □
In the following theorem, we investigate those situations in which the rest

of the properties imply Condition (GPWPsec).

Theorem 3.20. The following statements are equivalent.
(1) All right Rees factor acts of S satisfying Condition (P ) satisfy Condi-

tion (GPWPsec).
(2) All WPF right Rees factor acts of S satisfy Condition (GPWPsec).
(3) All strongly flat right Rees factor acts of S satisfy Condition

(GPWPsec).
(4) All projective right Rees factor acts of S satisfy Condition

(GPWPsec).
(5) Any projective generator right Rees factor acts of S satisfies Condition

(GPWPsec).
(6) All free right Rees factor acts of S satisfy Condition (GPWPsec).
(7) S does not contain a left zero or SS satisfies Condition (GPWPsec).

Proof. Since
free ⇒ projective generator ⇒ projective ⇒ strongly flat ⇒ WPF
⇒ Condition (P),

the implications (1) ⇒ (2) ⇒ (3) ⇒ (4) ⇒ (5) ⇒ (6) are obvious.
(6) ⇒ (7). Suppose that S contains a left zero, say z. Let KS = zS = {z}.

So, KS is a right ideal such that |KS| = 1. Therefore S/KS
∼= SS is free and

so, by the assumption, S/KS
∼= SS satisfies Condition (GPWPsec).

(7) ⇒ (1). Let K be a right ideal of S such that S/K satisfies Condition
(P ). If K = S, then S/K = S/SS

∼= ΘS. Hence, by Theorem 2.4, S/K ∼= ΘS

satisfies Condition (GPWPsec). If K ̸= S, then by [8, Propositon 3.13.9],
|K| = 1. If z ∈ K, then K = zS = {z}. Therefore z is a left zero of S and
so, SS satisfies Condition (GPWPsec). Hence, S/K ∼= SS satisfies Condition
(GPWPsec). □
Notation: We use Cl (Cr) to denote the set of all left (right) cancellable

elements of S.

Lemma 3.21. Let S ̸= Cr. Then, the following statements are true.
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(1) I = S \ Cr is a proper right ideal of S.
(2) S/I(I = S \ Cr) is a torsion free S-act.
(3) If S is eventually left PP , then I = S \ Cr is a GPW -left stabilizing

right ideal and so, AS = S
K⨿
S satisfies Condition (GPWPsec).

Proof. For the proofs of (1) and (2), we refer the reader to [7, Lemma 3.12].
Let s ∈ S. Since S is eventually left PP , there exists n ∈ N such that sn
is right e-cancellable for some e ∈ E(S). Let r ∈ S \ I = Cr be such that
rsn ∈ I. Since I = S \ Cr, rsn is not right cancellable. Thus, there exist
l1, l2 ∈ S such that l1 ̸= l2 and l1rs

n = l2rs
n. Now, by the assumption,

e ∈ E(S) exists such that l1re = l2re and esn = sn. Therefore, resn = rsn.
Since l1 ̸= l2, the equality l1re = l2re implies re ∈ S \Cr = I. So, I = S \Cr

is a GPW -left stabilizing right ideal. Hence, by part (2) of Theorem 2.12,

AS = S
I⨿
S satisfies Condition (GPWPsec). □

Lemma 3.22. [7, Lemma 3.13] Let S be right cancellative. Then, for every
right S-act,

strongly torsion free ⇐⇒ torsion free ⇐⇒ GP -flat
⇐⇒ principally weakly flat ⇐⇒ Condition (PWP)
⇐⇒ Condition (P ′) ⇐⇒ Condition (PWPE)
⇐⇒ TKF ⇐⇒ Condition (PWPssc) ⇐⇒ PWKF.

It is easy to verify that, if S is right cancellative in right S-acts, then
Condition (GPWPsec) is equivalent to every property of Lemma 3.22.

Theorem 3.23. Let (*) be a property of S-acts such that
Condition (GPWPsec) ⇒ Property (*) ⇒ torsion free.

Then, the following statements are equivalent.
(1) S is eventually left PP and the property (*) implies PWKF.
(2) S is eventually left PP and the property (*) implies TKF.
(3) S is eventually left PP and the property (*) implies Condition (PWP).
(4) S is eventually left PP and the property (*) implies Condition (P ′).
(5) S is right cancellative.

Proof. The implications (1) ⇒ (2) ⇒ (3) and (4) ⇒ (3) are obvious, because
PWKF ⇒ TKF ⇒ Condition (PWP)

and
Condition (P ′) ⇒ Condition (PWP).
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(3) ⇒ (5). Suppose that S is not right cancellative and I = S \ Cr. Then, I
is a GPW -left stabilizing right ideal of S by Lemma 3.21, and

AS = S
I⨿
S = {(l, x)|l ∈ S \ I}

·
∪ {(t, y)|t ∈ S \ I}

·
∪ I = (1, x)S ∪ (1, y)S

satisfies Condition (GPWPsec), by part (3) of Lemma 3.21. By the assump-
tion, AS satisfies Condition (PWP). If i ∈ I, then the equality (1, x)i = (1, y)i
implies the existence of a ∈ AS and u, v ∈ S such that (1, x) = au, (1, y) = av
and ui = vi. Therefore, t, l ∈ S \ I exist such that (l, x) = a = (t, y), which
is a contradiction. Hence, S is right cancellative, as required.
(5) ⇒ (1). Since S is right cancellative, it is eventually left PP . Also, by

Lemma 3.22, for every right S-act, the properties of being torsion free and
PWKF are equivalent to Condition (GPWPsec). Thus, by the assumption,
every right S-act satisfying the property (*) is PWKF.
(5) ⇒ (4). Since S is right cancellative, S is eventually left PP . Also,

by Lemma 3.22, the property of being torsion free is equivalent to Condition
(P ′) and Condition (GPWPsec). Thus, by the assumption, every right S-act
satisfying the property (*) also satisfies Condition (P ′). □
Note that the property (*) in the above theorem can be any property such

as Condition (GPWPsec), GP -flatness and GPW -flatness.
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CLASSIFICATION OF MONOIDS BY CONDITION (GPWPsec) OF RIGHT ACTS

M. SHAFIEI, H. MOHAMMADZADEH SAANY AND P. REZAEI

راست های سیستم از (GPWPsec) شرط اساس بر تکواره ها دسته بندی

رضایی٣ پریسا و محمدزاده ثانی٢ حسین شفیعی١، ملیحه

ایران زاهدان، بلوچستان، و سیستان دانشگاه کامپیوتر، علوم و آمار ریاضی، ١,٢,٣دانشکده

همکاران و رشیدی ((١)١٢: ١٧۵ - ١٩٧ (٢٠٢٠) کاربردها، با عمومی جبری ساختارهای و (رسته ها در
همواری ضعیف اساسی طور به از تعمیمی عنوان به را تکواره ها روی سیستم ها GPW−همواری خاصیت
می کنیم. مقایسه GPW−همواری با را آن و معرفی را (GPWPsec) شرط مقاله این در کردند. معرفی
می پردازیم تکواره هایی مشخص سازی به و آورده دست به را (GPWPsec) شرط کلی خواص از برخی

برعکس. و می دهد نتیجه سیستم هایشان روی را دیگر خواص از برخی شرط این که

چپ. GPW−ثابت ساز چپ، PP نهایتاً ،(GPWPsec) شرط کلیدی: کلمات
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