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t-PRIME SUBMODULES AND THEIR DECOMPOSITIONS

J. Moghaderi* and A. Tercan

ABSTRACT. Let R be a commutative ring with identity. For ¢t € N, a proper submod-
ule N of an R-module M is called a t-prime submodule if rm € N (r € R,m € M),
then m € N or r* € (N :g M). We obtain some other characterizations of t-prime
submodules. Also, by some other notions like t-secondary submodules, various prop-
erties of t-prime submodules are investigated. To this end, we deal with irreducible as
well as reduced t-prime decompositions of a submodule. We provide several examples
to illustrate our results.

1. INTRODUCTION

Throughout this article, R denotes a commutative ring with identity and
all modules are unitary. Also, N, Z, and Q will denote, respectively, the
natural numbers, the ring of integers, and the field of rational numbers and

t € N. If N is an R-submodule of M, annihilator of R-module % is defined

as Anng(%) = (N :g M) = {r € R: rM C N}. Thus, the annihilator of
M, denoted by Anng(M), is (0 :g M). Suppose that I is an ideal of R. We
denote the radical of I by VI ={a € R:a" €I for some n € N}.

Recall that a proper submodule N of M is called prime (primary) if
re € N, for r € R and x € M, implies that either x € N or r € (N :g M)
(r" € (N :g M), for some n € N)(see [1], [4], [0]).

In [¥] for t € N, we defined the concept t-prime submodule and found some
basic properties of it. It is shown that for ring extension

f:R—S,

such that S is a free R-module and N is a submodule of an R-module M, N is
a t-prime submodule of M if and only if N @), S is a t-prime R-submodule
of M@pS. In this paper, the concepts t-secondary module and t-prime
decomposition of a submodule was introduced. In section 2, we investigate
some other properties of t-prime submodules. We find the relation between
t-prime submodules with some other notions in module theory. We stud-
ied irreducible as well as reduced t-prime decompositions of a submodule in
MG, 1018,
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section 3. In particular, we apply our results to special finitely generated
modules. In section 4, we provide several examples, for the notions and the
necessary conditions of some propositions in the former sections.

2. T-PRIME AND T-SECONDARY SUBMODULES

In this section, first, we recall the notion t-prime submodule, for ¢t € N
and say some characterizations of it [3]. Moreover other various properties of
t-prime submodules are considered.

Definition 2.1 ([%], Definition 2.1). A proper submodule N of a module M
over a commutative ring R is said to be a t-prime submodule, if for a € R

and x € M, ax € N, then x € N or a' € (N :g M). Also a proper ideal I of
R is called a t-prime ideal, if for r,s € R, rs € I, then r' € [ or s' € I.

Let I be a non-empty subset of R. We denote v/I = {r € R|rt € I}.
So, a proper submodule N of an R-module M is a t-prime submodule, if for
a€ Rand z € M, ax € N, then x € N or a € \/(N :p M).

Recall that a proper ideal I of R is called semiprime, if whenever a" € I

fora € Rand n € N, then a € I [7].

Lemma 2.2 ([8], Lemma 2.2). Let I and J be ideals of R and t € N. Then,
the following statements hold.

(i) I CV/I.

(i) I = R if and only if VI = R.

(iii) If I C J, then VI C~/J.

(iv) VINJT =vIn~/J.

(v) For all s > t, VI C /1.

(vi) VT =/NT = V1.

(vii) /T C V1.

(vidi) /I = /T,

(iz) If I is a semiprime or radical ideal, then NI =T =~/T =1, for any
s € N.
Proposition 2.3 ([3], Proposition 2.4). Let N be a t-prime submodule of an
R-module M. Then

(1) (N :g M) is a t-prime ideal of R.

(7i) /(N :gp M) is a prime ideal of R.
Theorem 2.4 ([8], Theorem 2.1). Let M be an R-module, and N be a proper
submodule of M. Then the following statements are equivalent:
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(1) N is a t-prime submodule of M ;

(i) IL C N, forideal I of R and submodule L of M, implies that L C N
or I C/(N g M);

(1ii)) N = (N :pp 1) orr € \/(N :g M), for any r € R;

(tv) Re C N or (N :gx) C /(N :g M), for any x € M;

(v) N={m e M|rm € N}, forallr € R— /(N :g M);

(vi) N ={m € M|Jm C N}, forallideal J of R such that J L /(N :p M);

(vit) (N :p m) C \/NRM for allm e M — N;

(viti) (N :g L) C /(N :g M), for any submodule L of M such that N C L;

(zx)anan+N /(N :g M), for allme M — N;
M
(5) Zn(3y) € /(N o 3D);

(zi) N ={m € M|rm € N, for somer € R— /(N g M)}.
Proposition 2.5 ([3], Proposition 2.5). Let N be a submodule of an R-module
M such that (N g M) is a semiprime or radical ideal of R. Then N is a
prime submodule if and only if N is a t-prime submodule.

Corollary 2.6 ([3], Corollary 2.1). Let N be a t-prime submodule of an R-
module M. Then, for anyr € R, (N 1) = M or (N :p 1) is a t-prime
submodule of M.

Proposition 2.7 ([8], Proposition 2.9). (i) Let {N;}icr be a nonempty set of
t-prime submodules of an R-module M such that (N; :p M) = (N; :r M), for
any i,j € I. Then (\,c; Ni is a t-prime submodule.

(7i) Let {N;}icr be a chain of t-prime submodules of a finitely generated
R-module M. Then |J;c; N; is a t-prime submodule of M.

Definition 2.8 ([3], Definition 2.4). An R-module M is said to be a t-
torsion-free R-module, if rz = 0, for r € R and x € M, then x = 0 or
r €/ Anng(M).

Theorem 2.9 ([%], Theorem 2.3). Let N be a proper submodule of an R-
module M. Then N is a t-prime submodule if and only zfﬁ is a t-torsion-free
R-module.

Definition 2.10 ([3], Definition 2.5). An R-module M is called t-prime mod-
ule, if the zero is a t-prime submodule of it.

Recall that a proper submodule N of M is said to be an r-submodule, if
for a € R, m € M and whenever am € N with annys(a) = 0, then m € N

3]
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Proposition 2.11 ([8], Proposition 2.12). Let M be an R-module. Then, the
following conditions are equivalent.
(1) M is a t-prime module.

(11) Zp(M) =/ Anngr(M).

(7ii) Any r-module is a t-prime submodule.

Proposition 2.12 ([3], Proposition 2.13). Let N be a proper submodule of a
torsion-free R-module M. Then the following conditions are equivalent.
(i) N is a t-prime submodule;

(ii) rN = NNrM, for anyr € R — /(N :g M);
(i) N = (N :pr 1), for anyr € R — /(N :g M).

Proposition 2.13 ([3], Proposition 2.16). (i) Let {P,};cr be a nonempty set
of prime submodules of an R-module M. If (\,c; P; is a t-prime submodule,
then (;c; Pi is a prime submodule.

(7i) Let {P;};cr be a nonempty set of primary submodules of an R-module

M. If ey P is a t-prime submodule, then (\,c; Pi s a primary submodule.

At the follow of this section, we obtain some other characterizations of
t-prime submodules.

Proposition 2.14. Let M be an R-module, and S be a multiplicatively closed
subset of R such that R — Anng(M) C S. If S* is a S-closed subset of M
and N is a submodule of M such that N NS* = (), then there exists a t-prime
submodule L of M such that N C L and LN S* = ().

Proof. Put Q = {L|IN C L < M; LNS* =0}. Since N € Q, Q is a non-empty
set and partially ordered with inclusion. By Zorn’s Lemma, ) has a maximal
element like L. Since L NS* = (), L is a proper submodule of M. Assume
that L is not a t-prime submodule. So there exist r € R — /(L :g M) and
x € M — L such that ro € L. Thus r ¢ Anngr(M) and by the maximality
of L in  and since L C (L :p; ), we have that (L :py 7) € Q. So there
exists y € S* such that ry € L. Now as S* is S-closed and r € S, we have
ry € LNS*, which is a contradition. Therefore L is a t-prime submodule. [

Theorem 2.15. Let f : M — M be an R-homomorphism. Then the
followings hold:

(i) If f is an epimorphism, and N is a t-prime submodule of M containing
Ker(f), then f(N) is a t-prime submodule of M .

(ii) If L is a t-prime submodule of M, then f~(L') = M or f~Y(L) is a
t-prime submodule of M.
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!/

(iii) If N is a t-prime submodule of M and (f*(N') :g M) ¢ /(N :zg M),
then f~Y(N') = M.

Proof. (i) Tt is clear that f(IV) is a proper submodule of M. Let rz" € f(IV),
forr € R, ' € M. Since f is an epimorphism, there exists € M such that
z = f(x). Then ra’ = rf(z) = f(rz) € f(N). As Ker(f) C N, we conclude
that 72 € N. Also, note that (N :x M) C (f(N) :g M'). Since N is a t-prime
submodule of M, we get the result that + € N and so # = f(x) € f(N)
or r € v/(N :p M) which implies r € \/(f(N) :p M'). Therefore f(N) is a
t-prime submodule.

(ii) Let f~Y(L) # M and ro € f(L), for r € R, x € M. Then
f(re) = rf(x) € L. Since L' is a t-prime submodule of M', f(z) € L'
and so x € f~Y(L) or r € /(L' :rg M) which implies r € V/(f~1(L') :r M)
(note that (L' :x M) C (f~YL") :r M)). Consequently, f~1(L) is a t-prime
submodule of M.

(iii) Consider N = f~Y(N'),r € (N :g M) — /(N :g M) and let z € M.
Then rz € N and so rf(z) € N'. Now as N is t-prime, f(z) € N and hence
x € N. Therefore N = M. ]

Corollary 2.16. Let M be an R-module and L, N be two submodules of M.
Then the following statments hold:

(1) If L C N, then N is a t-prime submodule of M if and only if % is a
t-prime submodule of %

(7i) If N is a t-prime submodule of M and L £ N, then NN L is a t-prime
submodule of L.

Let M be an R-module and S be a multiplicatively closed subset of R.
Consider the natural homomorphism ¢ from M to Mg defined by ¢(m) = ?,
for any m € M. Then for each submodule L of Mg, we define L as an inverse
image of L under the above homomorphism.

Proposition 2.17. Let M be an R-module and S a multiplicatively closed
subset of R.

(1) If N is a t-prime submodule of M, then Ng = Mg or Ng is a t-prime
submodule of Mg.

(ii) If M is finitely generated, L is a t-prime submodule of Mg, then L€ is
a t-prime submodule of M.

Proof. (i) Let Ng # Mg and %7 € Ng, for a € R, 5,1 € S, m € M. Then
we have uam € N, for some u € S. Since N is a t-prime submodule of M,
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we conclude that m € N and so 7 € Ng or ua € /(N :g M) which implies
4 € \/(Ng :g Mg). Therefore Ng is a t-prime submodule of Mg.
s

(ii) Let am € L¢, for a € R, m € M. Then we have {F € L. As L

is a t-prime submodule of Mg, we conclude that 7 € L and so m € L or

— € /(L :rs Mg), which implies r € {/(L¢ :g M). Therefore L is a t-prime

submodule of M. OJ

Proposition 2.18. Let N be a t-prime submodule of an R- module M and S
be a multiplicatively closed subset of R such that SN /(N :g M) =1. Then
(i) (Ns :rg Ms) = (N :r M)s.
(ii) Ng = {% € Ms|z € N}.

Proof. (i) Let % € (N:gM)g, forre (N:gM)andl e S. SorM C N and

hence §MS C Ng. Thus % € (N :p, Ms). Then (N :p M)g C (Ns :p sMg).

Now let % € (Ng :ps Mg) and x € M. Then %% € Ng and so there exists

u € S such that urz € N. If u’ € (N :g M), then u € SNy/(N :g M), which
yields a contradlctlon So as N is t-prime, rz € N. Therefore r € (N :p M)

and hence 7 € (N g M)g.

(ii) It is clear that {— € Mglzr € N} C Ng. Let % € Ng. So, there exists
s

u € S such that uxz € N. Thus u ¢ /(N :g M) and since N is t-prime,
r € N. HGHCG%€{§EM5’$EN}. O
S

Lemma 2.19. Let M be a finitely generated R-module such that Anng(M)
s a radical ideal and for every multiplicatively closed set S C R, the kernel
of p: M — Mg is either (0) or M. Then M is a t-prime module.

Proof. Assume that ro = 0 where r € R — {/Anng(M) and € M. So
r & \/Anngr(M) and hence r" # 0, for every n € N. We put
S={r":neNU{0}}.

Clearly S is a multiplicatively closed subset of R. If Ker(p) = 0, then as
() =7 =""=0we have x = 0. Let Ker(p) = M. Since M is finitely
generated, we can write M = Rx1+ Rxo+...+ Rxy, for some x1, xo, ..., x; € M.
Then ¢(z;) = % = 0 for any 1 <4 < t. Thus for any 7, there exists [; € N

such that rliz; = 0. Let us take j = max{ly,ls, ..., l;}. Thus we have r/M = 0
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and so r € /Anng(M), which is a contradiction. Therefore M is a t-prime
module. ]

Lemma 2.20. Let M be a t-prime module. Then for every multiplicatively
closed subset S of R, the kernel of ¢ : M — Mg is either (0) or M.

Proof. Let 0 # y € Keryp. Thus ¢(y) = % = 0 and so there exists u € S

such that sy = 0. As y # 0 and (0) is t-prime, s € Anng(M). Hence
s' € SN Anng(M). Therefore Kerp = M. ]

As a consequence of Lemmas 2.19 and 2.20, we have the following result.

Theorem 2.21. Let M be a finitely generated R-module such that Anng(M)
1s a radical ideal. Then M 1is a t-prime module if and only if for every
multiplicatively closed subset S of R, the kernel of ¢ : M — Mg 1is either
(0) or M.

Lemma 2.22. Let {L;}ic; be a family of R-submodules of {M;}icr. If WicrL;
s a t-prime submodule of Il;c;M;, then for every 1 € I, L; = M; or L; is a
t-prime submodule of M;. If for all i,j € I, (L; :r M;) = (L;j :p M;), then
the converse hold.

Proof. Let 1l;c;L; be a t-prime submodule of 1I;c;M; and ¢ be an arbitrary
in . We will prove L;(# M;) is a t-prime submodule of M;. Suppose that
re € L, forr € Rand x € M;. Put x; :== x and z; := O for all j # ¢. Then we
have r(x;)jer € ljerL;. Since IljerL; is a t-prime submodule of I/ M, so
(Sl?j)jg] S Hje_rLj and hence x; € L; or rt e (HjGILj ‘R Hje_er) C (Lz ‘R Ml)
Therefore L; is a t-prime submodule of M;. Now assume that for all ¢, j € I,
(Li :r M;) = (L; :r M;) and for every ¢ € I, L; is a t-prime submodule of
M;. Let r(z;)jer € L, for r € R and (z;)jer € lerM;. So for every
i €1, rx; € L;. If there exists [ € I such that z; ¢ L;, then

rt e (Ly:g My) = (WierL; g Wier M;).
Therefore 11;c;L; is a t-prime submodule of II;c;M;. O]

Lemma 2.23. Let {L;}iecr be a family of R-submodules of {M;}ier. Then
Lj x [lieriz; Mi is a t-prime submodule of [[;c; Mi, if and only if L; is a
t-prime submodule of M; , for any j € 1.

Proposition 2.24. Let N be a proper R-submodule of M. Then N is a

t-prime submodule of M if and only if for each a € R — /(N :p M), the
homothety A\, : % — % s injective.



376 MOGHADERI AND TERCAN

Proof. Suppose that N is a t-prime submodule and A,(z + N) = 0% for

a € R—\/(N:gM), x € M. Then ar € N and since N is a t-prime
submodule, so x € N and x + N = 0. Hence )\, is injective. Conversely,
suppose that rx € N where r ¢ /(N :p M), for r € R, x € M. It follows
that \.(x + N) = 0. Since )\, is injective, z + N = 0 and so = € N. O

Theorem 2.25. Let N be a proper R-submodule of M. Then N is a t-prime
submodule of M if and only if for each a € R, the homothety A, : % — %
is injective or Xt = 0.

Proof. Let N be t-prime and for a € R, A\, does not be injective. So there
exists z € M — N such that \,(z + N) = 0. Hence ax € N and then

a € 4 AnnR(ﬁ). Thus at(ﬁ) = 0 and therefore \! = 0. Now assume

that for each a € R, the homothety A, : % — % is injective or ! = 0

and az € N, for a € R and x € M. Hence A\y(x + N) = axr + N = 0.
M _
If A\, is injective, then z € N; else AL = 0. So at(ﬁ) = 0 and therefore

CLE\t/(NiRM). []

In [5], I.G. Macdonald introduced the notion of secondary modules. A
nonzero R-module M is said to be secondary, if for each a € R the endomor-
phism of M given by multiplication by a is either surjective or nilpotent. We
call a nonzero R-module M t-secondary, if for each a € R the homothety ¢,
of M given by multiplication by a is either surjective or (¢,)" = 0.

Proposition 2.26. If M is a t-secondary R-module such that every ascending
chain of cyclic submodules of it stops, then every proper submodule of M is
a t-prime submodule.

Proof. Let N be a proper submodule of M and rx € N, for r € R and
x € M. Assume that ¢, is the homothety M — M, for r. If (p,)! = 0, then
rt € Anng(M) and so r € /(N :g M). If o, is surjective, then we have

r=7Tr
r1 =Ty
T9 = TT3

Lp = TTp41
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for some z; € M. Then < z >C< 1 >C< 29 > ... C< x,, >C .... Since M
is complete, there exists n € N such that < x,, >=< x; >, for every ¢ > n.
Hence there exists s € R such that z,,; = sx,. It follows that x, = rsx,.

So we have v = srx. As rx € N, so x € N. Therefore N is a t-prime
submodule. O

Proposition 2.26, gives that once the following corollary on Noetherian t-
secondary modules.

Corollary 2.27. Let M be a Noetherian t-secondary module. Then every
proper submodule is a t-prime submodule.

3. T-PRIME DECOMPOSITION

In this section, we deal with irreducible as well as reduced t-prime decom-
positions of a submodule. To this end, we give the definitions of the former
concepts.

Definition 3.1. Let N be a submodule of an R-module M. A decomposition
N =N N;, where N; (1 < i < n) are t-prime submodules of M is called a
t-prime decomposition of N in M. The t- pime decomposition is said to be
reduced if there does not exist j, (1 < j < n) such that N7 N; € N; and

i=1, i#]
all P, distinct (1 <i < n), where P, = \/(V; :r M).

By Proposition 2.7 (i), the intersection of any t-prime submodule which
the colon ideals of module into them are equal, is a t-prime submodule. So
it is clear that any t-prime decomposition can be changed to reduced one.

Example 3.2. By Lemma 2.1 (ii) in [3], 6Z has a t-prime decompostion.

Remark 3.3. (i) By Proposition 2.2(i) in [3], any t-prime submodule is a
primary submodule. Then any t-prime decomposition, is a primary decom-
position.

(ii) By Remark 3.1 in [8], N = 8Z @ 4Z is a primary submodule, which
is not a 2-prime submodule of Z-module Z@ Z. Similarly, L = 4Z P 8Z
is a primary submodule, which is not a 2-prime submodule. Therefore
N N L is a primary decomposition of Z-module Z @ Z, which is not a 2-
prime decomposition. (Note that in this example, ring is Noetherian and
module is finitely generated.)

(iii) By Proposition 2.2(iii) in [8], a t-prime submodule is an s- prime sub-
module, for any s > t. Then any t-prime decomposition is an s- prime
decomposition, for any s > t. But the converse is not true in general.
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Recall that a proper submodule N of M is called irreducible, if N can not
be expressed as an intersection of two submodules of M properly containing
N [2].

Theorem 3.4. Let M be a Noetherian R-module and N be an irreducible
submodule of M such that (N :gp M) is a radical ideal. Then N is a t-prime
submodule.

M M
Proof. Assume that there exists a € R such that A, : N — N is not injective

M
and A\ # 0. Since Ker\! C KerA2t C ... and ~ is Noetherian, there exists

i such that KerA = KerAl ™ = ... Put ¢ = A, Then Ker¢ = Kerg?. It
is easy to see that Ker¢pNIme¢ = (0). If Ker¢ = (0), then ¢ is injective and so
A\, is injective too, which is a contradiction. If Im¢ = (0), then A\, = A =0
and so a € (N :g M). Hence a' € \/(N :g M) = (N :g M). Thus A\, =0,
which is a contradiction. Now put Ny = 7 }(Ker¢) and Ny = 71 (Img),

M
where 7 : M — N is the natural projection. Then N = N; N Ns, such that

N7 and Ny are submodules of M properly containig NV, that is a contradiction
(as IV is an irreducible submodule). Therefore N is a t-prime submodule. [J

Recall that a prime ideal P is said to be associated with M, if P is the
annihilator of some non-zero element of M. The set Ass(M) denotes the set
of prime ideals associated to M.

Theorem 3 5 Let R be a Noetherian ring, M be a finitely generated
R module, = M N; be a reduced t-prime decomposition and

= /( ZRJW ThenAss M) ={P,...,P,}.

Proof. Let P € Ass(M). So there exists a non-zero x € M such that
P = Ann(r). As x # 0, by rearranging the N;, there exists j such that

r ¢ Ul_ Njand z € Ni_;, | N;. Forany i and any a € P;, as P; = \/(N; RM
M

there exists the smallest s € N such that a°M C N;. So A, L — ﬁ is
not injective. Hence as N; is t-prime, by Theorem 2.25, A = 0.Z It mezans
a' € (N; :r M). As R is Noetherian, P; is finitely generated and so there
exists n; € N such that P C (N; :p M). Thus [[]_, B € (N; :r M).
Then [[_; Pz C N, N; = (0). Therefore [[]_; P C Ann(xz) = P and
so there exists [ € N, (I <1 < j) such that P, € P. Now assume that

a € P. Soar =0 and since z & Nj, A, : N — N is not injective. Hence
l !
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as N, is t-prime, by Theorem 2.25, \! = 0. It means a' € (N, :g M). So
a € \/(N;:g M) =P. Thus P = P, € {P, ..., P,}. Now we show that for
any j, (1 < j <n), P, € Ass(M). As (0) = NI, V; is a reduced t-prime
decomposition, there exists x € ML Z-#Ni — Nj. On the other hand, as
R is Noetherian, there exists the smallest n € N such that P’z C N; and
P 'z & Nj. Let y € P/~'z — N;. Then Pjy C Pz € M) N; = (0). Hence

M M
P; C Ann(y). If a € Ann(y), then ay = 0 and since y & Nj, Ay 1 — — —

N;  N;

is not injective. Hence as Nj; is t-prime, by Theorem 2.25, A, = 0. It means
a' € (N; :r M). So a € \/(N; :p M) = P; and thus Ann(y) C P;. Therefore
P; = Ann(y) € Ass(M). O

Corollary 3.6. Let R be a Noetherian ring and M be a finitely gener-
ated R-module. If N = NI |N; is a reduced t-prime decomposition, then
Pi(=\/(N; :p M)) are uniquely determined by N.

N;
Proof. By Corollary 2.16, (0) = ﬂ?:1ﬁ is a reduced t-prime decomposition
M M
in N Therefore Ass(ﬁ) ={P,..., P,} is uniquely determined by N. O

Corollary 3.7. With assumption of Theorem 3.5, Ass(M) is a finite set and
M =0 if and only if Ass(M) = 0.

4. EXAMPLES

This section is devoted to examples. We provide several examples which is
illustrated throughout our results mentioned in previous sections.

Remark 4.1. If R=7, M =7 & Z and N = 8Z & 47, then as
(N ‘R M):QZ,

N is a primary submodule of M, but it is not a 2-prime submodule, as

2(4,2) € N, but 2 ¢ /(N :p M) and (4,2) ¢ N.

Hence every primary decomposition is not a t-prime decomposition.

In the following examples we show that the condition Ker(f) C N in
Theorem 2.15(i) and the condition monomorphism in Theorem 2.15(ii), are
necessary.

Example 4.2. Consider the Z-epimorphism

VL — L; a—a
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Clearly 9(0) = 0 and Ker(¢)) = 6Z € (0). (0) is not a t-prime submodule of
Zg. Since 2 . 3 =0 but 2! ¢ (0 : Zg) = 6Z.

Example 4.3. Consider the zero homomorphism
g:Q — Z;

clearly Ker(g) = Q. So g is not a monomorphism. By Example 3.6 in [3],
g7 1(0) is not a t-prime submodule.

Example 4.4. (i) M = Z4 is a 2-secondary Z-module.
(ii) M = Z & 3Z is not a 2-secondary Z-module (Consider ¢s).
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