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t-PRIME SUBMODULES AND THEIR DECOMPOSITIONS

J. Moghaderi∗ and A. Tercan

Abstract. Let R be a commutative ring with identity. For t ∈ N, a proper submod-
ule N of an R-module M is called a t-prime submodule if rm ∈ N (r ∈ R,m ∈ M),
then m ∈ N or rt ∈ (N :R M). We obtain some other characterizations of t-prime
submodules. Also, by some other notions like t-secondary submodules, various prop-
erties of t-prime submodules are investigated. To this end, we deal with irreducible as
well as reduced t-prime decompositions of a submodule. We provide several examples
to illustrate our results.

1. Introduction
Throughout this article, R denotes a commutative ring with identity and

all modules are unitary. Also, N, Z, and Q will denote, respectively, the
natural numbers, the ring of integers, and the field of rational numbers and
t ∈ N. If N is an R-submodule of M , annihilator of R-module M

N
is defined

as AnnR(MN ) = (N :R M) = {r ∈ R : rM ⊆ N}. Thus, the annihilator of
M , denoted by AnnR(M), is (0 :R M). Suppose that I is an ideal of R. We
denote the radical of I by

√
I = {a ∈ R : an ∈ I for some n ∈ N}.

Recall that a proper submodule N of M is called prime (primary) if
rx ∈ N , for r ∈ R and x ∈ M , implies that either x ∈ N or r ∈ (N :R M)
(rn ∈ (N :R M), for some n ∈ N)(see [1], [4], [6]).

In [8] for t ∈ N, we defined the concept t-prime submodule and found some
basic properties of it. It is shown that for ring extension

f : R → S,
such that S is a free R-module and N is a submodule of an R-module M , N is
a t-prime submodule of M if and only if N

⊗
R S is a t-prime R-submodule

of M
⊗

R S. In this paper, the concepts t-secondary module and t-prime
decomposition of a submodule was introduced. In section 2, we investigate
some other properties of t-prime submodules. We find the relation between
t-prime submodules with some other notions in module theory. We stud-
ied irreducible as well as reduced t-prime decompositions of a submodule in
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section 3. In particular, we apply our results to special finitely generated
modules. In section 4, we provide several examples, for the notions and the
necessary conditions of some propositions in the former sections.

2. t-Prime and t-Secondary Submodules
In this section, first, we recall the notion t-prime submodule, for t ∈ N

and say some characterizations of it [8]. Moreover other various properties of
t-prime submodules are considered.

Definition 2.1 ([8], Definition 2.1). A proper submodule N of a module M
over a commutative ring R is said to be a t-prime submodule, if for a ∈ R
and x ∈ M , ax ∈ N , then x ∈ N or at ∈ (N :R M). Also a proper ideal I of
R is called a t-prime ideal, if for r, s ∈ R, rs ∈ I, then rt ∈ I or st ∈ I.

Let I be a non-empty subset of R. We denote t
√
I = {r ∈ R|rt ∈ I}.

So, a proper submodule N of an R-module M is a t-prime submodule, if for
a ∈ R and x ∈M , ax ∈ N , then x ∈ N or a ∈ t

√
(N :R M).

Recall that a proper ideal I of R is called semiprime, if whenever an ∈ I
for a ∈ R and n ∈ N, then a ∈ I [7].

Lemma 2.2 ([8], Lemma 2.2). Let I and J be ideals of R and t ∈ N. Then,
the following statements hold.

(i) I ⊆ t
√
I.

(ii) I = R if and only if t
√
I = R.

(iii) If I ⊆ J , then t
√
I ⊆ t

√
J .

(iv) t
√
I ∩ J = t

√
I ∩ t

√
J .

(v) For all s ≥ t, t
√
I ⊆ s

√
I.

(vi) t
√

s
√
I =

s
√

t
√
I = ts

√
I.

(vii) t
√
I ⊆

√
I.

(viii) t
√√

I =
√
I.

(ix) If I is a semiprime or radical ideal, then t
√
I =

√
I = s

√
I = I, for any

s ∈ N.

Proposition 2.3 ([8], Proposition 2.4). Let N be a t-prime submodule of an
R-module M . Then

(i) (N :R M) is a t-prime ideal of R.
(ii)

√
(N :R M) is a prime ideal of R.

Theorem 2.4 ([8], Theorem 2.1). Let M be an R-module, and N be a proper
submodule of M . Then the following statements are equivalent:
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(i) N is a t-prime submodule of M ;
(ii) IL ⊆ N , for ideal I of R and submodule L of M , implies that L ⊆ N

or I ⊆ t
√

(N :R M);
(iii) N = (N :M r) or r ∈ t

√
(N :R M), for any r ∈ R;

(iv) Rx ⊆ N or (N :R x) ⊆ t
√

(N :R M), for any x ∈M ;
(v) N = {m ∈M |rm ∈ N}, for all r ∈ R− t

√
(N :R M);

(vi) N = {m ∈M |Jm ⊆ N}, for all ideal J of R such that J 6⊆ t
√
(N :R M);

(vii) (N :R m) ⊆ t
√
(N :R M), for all m ∈M −N ;

(viii) (N :R L) ⊆ t
√
(N :R M), for any submodule L of M such that N ⊂ L;

(ix) annR(m+N) ⊆ t
√
(N :R M), for all m ∈M −N ;

(x) ZR(
M

N
) ⊆ t

√
(N :R M);

(xi) N = {m ∈M |rm ∈ N, for some r ∈ R− t
√

(N :R M)}.
Proposition 2.5 ([8], Proposition 2.5). Let N be a submodule of an R-module
M such that (N :R M) is a semiprime or radical ideal of R. Then N is a
prime submodule if and only if N is a t-prime submodule.
Corollary 2.6 ([8], Corollary 2.1). Let N be a t-prime submodule of an R-
module M . Then, for any r ∈ R, (N :M r) = M or (N :M r) is a t-prime
submodule of M .
Proposition 2.7 ([8], Proposition 2.9). (i) Let {Ni}i∈I be a nonempty set of
t-prime submodules of an R-module M such that (Ni :R M) = (Nj :R M), for
any i, j ∈ I. Then

∩
i∈I Ni is a t-prime submodule.

(ii) Let {Ni}i∈I be a chain of t-prime submodules of a finitely generated
R-module M . Then

∪
i∈I Ni is a t-prime submodule of M .

Definition 2.8 ([8], Definition 2.4). An R-module M is said to be a t-
torsion-free R-module, if rx = 0, for r ∈ R and x ∈ M , then x = 0 or
r ∈ t

√
AnnR(M).

Theorem 2.9 ([8], Theorem 2.3). Let N be a proper submodule of an R-
module M . Then N is a t-prime submodule if and only if M

N
is a t-torsion-free

R-module.
Definition 2.10 ([8], Definition 2.5). An R-module M is called t-prime mod-
ule, if the zero is a t-prime submodule of it.

Recall that a proper submodule N of M is said to be an r-submodule, if
for a ∈ R, m ∈ M and whenever am ∈ N with annM(a) = 0, then m ∈ N
[3].
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Proposition 2.11 ([8], Proposition 2.12). Let M be an R-module. Then, the
following conditions are equivalent.

(i) M is a t-prime module.
(ii) ZR(M) = t

√
AnnR(M).

(iii) Any r-module is a t-prime submodule.

Proposition 2.12 ([8], Proposition 2.13). Let N be a proper submodule of a
torsion-free R-module M . Then the following conditions are equivalent.

(i) N is a t-prime submodule;
(ii) rN = N ∩ rM , for any r ∈ R− t

√
(N :R M);

(ii) N = (N :M r), for any r ∈ R− t
√

(N :R M).

Proposition 2.13 ([8], Proposition 2.16). (i) Let {Pi}i∈I be a nonempty set
of prime submodules of an R-module M . If

∩
i∈I Pi is a t-prime submodule,

then
∩

i∈I Pi is a prime submodule.
(ii) Let {Pi}i∈I be a nonempty set of primary submodules of an R-module

M . If
∩

i∈I Pi is a t-prime submodule, then
∩

i∈I Pi is a primary submodule.

At the follow of this section, we obtain some other characterizations of
t-prime submodules.

Proposition 2.14. Let M be an R-module, and S be a multiplicatively closed
subset of R such that R − AnnR(M) ⊆ S. If S∗ is a S-closed subset of M
and N is a submodule of M such that N ∩S∗ = ∅, then there exists a t-prime
submodule L of M such that N ⊆ L and L ∩ S∗ = ∅.

Proof. Put Ω = {L|N ⊆ L ≤M ;L∩S∗ = ∅}. Since N ∈ Ω, Ω is a non-empty
set and partially ordered with inclusion. By Zorn’s Lemma, Ω has a maximal
element like L. Since L ∩ S∗ = ∅, L is a proper submodule of M . Assume
that L is not a t-prime submodule. So there exist r ∈ R − t

√
(L :R M) and

x ∈ M − L such that rx ∈ L. Thus r /∈ AnnR(M) and by the maximality
of L in Ω and since L ⊂ (L :M r), we have that (L :M r) 6∈ Ω. So there
exists y ∈ S∗ such that ry ∈ L. Now as S∗ is S-closed and r ∈ S, we have
ry ∈ L∩S∗, which is a contradition. Therefore L is a t-prime submodule. □

Theorem 2.15. Let f : M −→ M
′ be an R-homomorphism. Then the

followings hold:
(i) If f is an epimorphism, and N is a t-prime submodule of M containing

Ker(f), then f(N) is a t-prime submodule of M ′.
(ii) If L′ is a t-prime submodule of M ′, then f−1(L

′
) = M or f−1(L

′
) is a

t-prime submodule of M .
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(iii) If N ′ is a t-prime submodule of M ′ and (f−1(N
′
) :R M) 6⊂ t

√
(N ′ :R M

′),
then f−1(N

′
) =M .

Proof. (i) It is clear that f(N) is a proper submodule of M ′. Let rx′ ∈ f(N),
for r ∈ R, x′ ∈M

′. Since f is an epimorphism, there exists x ∈M such that
x

′
= f(x). Then rx′

= rf(x) = f(rx) ∈ f(N). As Ker(f) ⊆ N , we conclude
that rx ∈ N . Also, note that (N :R M) ⊆ (f(N) :R M

′
). Since N is a t-prime

submodule of M , we get the result that x ∈ N and so x
′
= f(x) ∈ f(N)

or r ∈ t
√

(N :R M) which implies r ∈ t
√

(f(N) :R M
′). Therefore f(N) is a

t-prime submodule.
(ii) Let f−1(L

′
) 6= M and rx ∈ f−1(L

′
), for r ∈ R, x ∈ M . Then

f(rx) = rf(x) ∈ L
′. Since L

′ is a t-prime submodule of M ′, f(x) ∈ L
′

and so x ∈ f−1(L
′
) or r ∈ t

√
(L′ :R M

′) which implies r ∈ t
√

(f−1(L′) :R M)

(note that (L
′
:R M

′
) ⊆ (f−1(L

′
) :R M)). Consequently, f−1(L

′
) is a t-prime

submodule of M .
(iii) Consider N = f−1(N

′
), r ∈ (N :R M) − t

√
(N ′ :R M

′) and let x ∈ M .
Then rx ∈ N and so rf(x) ∈ N

′. Now as N ′ is t-prime, f(x) ∈ N
′ and hence

x ∈ N . Therefore N =M . □
Corollary 2.16. Let M be an R-module and L, N be two submodules of M .
Then the following statments hold:

(i) If L ⊆ N , then N is a t-prime submodule of M if and only if N
L is a

t-prime submodule of M
L .

(ii) If N is a t-prime submodule of M and L 6⊆ N , then N ∩L is a t-prime
submodule of L.

Let M be an R-module and S be a multiplicatively closed subset of R.
Consider the natural homomorphism φ from M to MS defined by φ(m) =

m

1
,

for any m ∈M . Then for each submodule L of MS, we define Lc as an inverse
image of L under the above homomorphism.

Proposition 2.17. Let M be an R-module and S a multiplicatively closed
subset of R.

(i) If N is a t-prime submodule of M , then NS = MS or NS is a t-prime
submodule of MS.

(ii) If M is finitely generated, L is a t-prime submodule of MS, then Lc is
a t-prime submodule of M .

Proof. (i) Let NS 6= MS and a
s
m
l ∈ NS, for a ∈ R, s, l ∈ S, m ∈ M . Then

we have uam ∈ N , for some u ∈ S. Since N is a t-prime submodule of M ,
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we conclude that m ∈ N and so m
l ∈ NS or ua ∈ t

√
(N :R M) which implies

a

s
∈ t
√
(NS :R MS). Therefore NS is a t-prime submodule of MS.

(ii) Let am ∈ Lc, for a ∈ R, m ∈ M . Then we have a
1
m
1 ∈ L. As L

is a t-prime submodule of MS, we conclude that m
1 ∈ L and so m ∈ Lc or

r

1
∈ t
√

(L :RS
MS), which implies r ∈ t

√
(Lc :R M). Therefore Lc is a t-prime

submodule of M . □
Proposition 2.18. Let N be a t-prime submodule of an R-module M and S
be a multiplicatively closed subset of R such that S ∩ t

√
(N :R M) = ∅. Then

(i) (NS :RS
MS) = (N :R M)S.

(ii) NS = {x
s
∈MS|x ∈ N}.

Proof. (i) Let r
l
∈ (N :R M)S, for r ∈ (N :R M) and l ∈ S. So rM ⊆ N and

hence r
l
MS ⊆ NS. Thus r

l
∈ (NS :RS

MS). Then (N :R M)S ⊆ (NS :R SMS).

Now let r
l
∈ (NS :RS

MS) and x ∈ M . Then r

l

x

1
∈ NS and so there exists

u ∈ S such that urx ∈ N . If ut ∈ (N :R M), then u ∈ S∩ t
√
(N :R M), which

yields a contradiction. So as N is t-prime, rx ∈ N . Therefore r ∈ (N :R M)

and hence r
l
∈ (N :R M)S.

(ii) It is clear that {x
s
∈ MS|x ∈ N} ⊆ NS. Let x

l
∈ NS. So, there exists

u ∈ S such that ux ∈ N . Thus u /∈ t
√

(N :R M) and since N is t-prime,
x ∈ N . Hence x

l
∈ {x

s
∈MS|x ∈ N}. □

Lemma 2.19. Let M be a finitely generated R-module such that AnnR(M)
is a radical ideal and for every multiplicatively closed set S ⊆ R, the kernel
of φ :M −→MS is either (0) or M . Then M is a t-prime module.

Proof. Assume that rx = 0 where r ∈ R − t
√
AnnR(M) and x ∈ M . So

r /∈
√
AnnR(M) and hence rn 6= 0, for every n ∈ N. We put

S = {rn : n ∈ N ∪ {0}}.
Clearly S is a multiplicatively closed subset of R. If Ker(φ) = 0, then as
φ(x) = x

1 = rx
r = 0 we have x = 0. Let Ker(φ) = M . Since M is finitely

generated, we can write M = Rx1+Rx2+...+Rxt, for some x1, x2, ..., xt ∈M .
Then φ(xi) =

xi

1 = 0 for any 1 ≤ i ≤ t. Thus for any i, there exists li ∈ N
such that rlixi = 0. Let us take j = max{l1, l2, ..., lt}. Thus we have rjM = 0
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and so r ∈
√
AnnR(M), which is a contradiction. Therefore M is a t-prime

module. □
Lemma 2.20. Let M be a t-prime module. Then for every multiplicatively
closed subset S of R, the kernel of φ :M −→MS is either (0) or M .

Proof. Let 0 6= y ∈ Kerφ. Thus φ(y) =
y

1
= 0 and so there exists u ∈ S

such that sy = 0. As y 6= 0 and (0) is t-prime, st ∈ AnnR(M). Hence
st ∈ S ∩ AnnR(M). Therefore Kerφ =M . □

As a consequence of Lemmas 2.19 and 2.20, we have the following result.

Theorem 2.21. Let M be a finitely generated R-module such that AnnR(M)
is a radical ideal. Then M is a t-prime module if and only if for every
multiplicatively closed subset S of R, the kernel of φ : M −→ MS is either
(0) or M .

Lemma 2.22. Let {Li}i∈I be a family of R-submodules of {Mi}i∈I. If Πi∈ILi

is a t-prime submodule of Πi∈IMi, then for every i ∈ I, Li = Mi or Li is a
t-prime submodule of Mi. If for all i, j ∈ I, (Li :R Mi) = (Lj :R Mj), then
the converse hold.

Proof. Let Πi∈ILi be a t-prime submodule of Πi∈IMi and i be an arbitrary
in I. We will prove Li( 6= Mi) is a t-prime submodule of Mi. Suppose that
rx ∈ Li, for r ∈ R and x ∈Mi. Put xi := x and xj := 0 for all j 6= i. Then we
have r(xj)j∈I ∈ Πj∈ILj. Since Πj∈ILj is a t-prime submodule of Πj∈IMj, so
(xj)j∈I ∈ Πj∈ILj and hence xi ∈ Li or rt ∈ (Πj∈ILj :R Πj∈IMj) ⊆ (Li :R Mi).
Therefore Li is a t-prime submodule of Mi. Now assume that for all i, j ∈ I,
(Li :R Mi) = (Lj :R Mj) and for every i ∈ I, Li is a t-prime submodule of
Mi. Let r(xj)j∈I ∈ Πj∈ILj, for r ∈ R and (xj)j∈I ∈ Πj∈IMj. So for every
i ∈ I, rxi ∈ Li. If there exists l ∈ I such that xl /∈ Ll, then

rt ∈ (Ll :R Ml) = (Πi∈ILi :R Πi∈IMi).
Therefore Πi∈ILi is a t-prime submodule of Πi∈IMi. □
Lemma 2.23. Let {Li}i∈I be a family of R-submodules of {Mi}i∈I. Then
Lj ×

∏
i∈I,i 6=jMi is a t-prime submodule of

∏
i∈I Mi, if and only if Lj is a

t-prime submodule of Mj , for any j ∈ I.

Proposition 2.24. Let N be a proper R-submodule of M . Then N is a
t-prime submodule of M if and only if for each a ∈ R − t

√
(N :R M), the

homothety λa : M
N −→ M

N is injective.
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Proof. Suppose that N is a t-prime submodule and λa(x + N) = 0M
N

for
a ∈ R − t

√
(N :R M), x ∈ M . Then ax ∈ N and since N is a t-prime

submodule, so x ∈ N and x + N = 0. Hence λa is injective. Conversely,
suppose that rx ∈ N where r /∈ t

√
(N :R M), for r ∈ R, x ∈ M . It follows

that λr(x+N) = 0. Since λr is injective, x+N = 0 and so x ∈ N . □
Theorem 2.25. Let N be a proper R-submodule of M . Then N is a t-prime
submodule of M if and only if for each a ∈ R, the homothety λa : M

N −→ M
N

is injective or λta = 0.
Proof. Let N be t-prime and for a ∈ R, λa does not be injective. So there
exists x ∈ M − N such that λa(x + N) = 0. Hence ax ∈ N and then

a ∈ t

√
AnnR(

M

N
). Thus at(M

N
) = 0 and therefore λta = 0. Now assume

that for each a ∈ R, the homothety λa : M
N −→ M

N is injective or λta = 0

and ax ∈ N , for a ∈ R and x ∈ M . Hence λa(x + N) = ax + N = 0.
If λa is injective, then x ∈ N ; else λta = 0. So at(

M

N
) = 0 and therefore

a ∈ t
√

(N :R M). □
In [5], I.G. Macdonald introduced the notion of secondary modules. A

nonzero R-module M is said to be secondary, if for each a ∈ R the endomor-
phism of M given by multiplication by a is either surjective or nilpotent. We
call a nonzero R-module M t-secondary, if for each a ∈ R the homothety φa

of M given by multiplication by a is either surjective or (φa)
t = 0.

Proposition 2.26. If M is a t-secondary R-module such that every ascending
chain of cyclic submodules of it stops, then every proper submodule of M is
a t-prime submodule.
Proof. Let N be a proper submodule of M and rx ∈ N , for r ∈ R and
x ∈ M . Assume that φr is the homothety M → M , for r. If (φr)

t = 0, then
rt ∈ AnnR(M) and so r ∈ t

√
(N :R M). If φr is surjective, then we have

x = rx1

x1 = rx2

x2 = rx3
...

xn = rxn+1

...
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for some xi ∈ M . Then < x >⊆< x1 >⊆< x2 > ... ⊆< xn >⊆ .... Since M
is complete, there exists n ∈ N such that < xn >=< xi >, for every i ≥ n.
Hence there exists s ∈ R such that xn+1 = sxn. It follows that xn = rsxn.
So we have x = srx. As rx ∈ N , so x ∈ N . Therefore N is a t-prime
submodule. □

Proposition 2.26, gives that once the following corollary on Noetherian t-
secondary modules.
Corollary 2.27. Let M be a Noetherian t-secondary module. Then every
proper submodule is a t-prime submodule.

3. t-prime decomposition
In this section, we deal with irreducible as well as reduced t-prime decom-

positions of a submodule. To this end, we give the definitions of the former
concepts.
Definition 3.1. Let N be a submodule of an R-module M . A decomposition
N = ∩n

i=1Ni, where Ni (1 ≤ i ≤ n) are t-prime submodules of M is called a
t-prime decomposition of N in M . The t- pime decomposition is said to be
reduced if there does not exist j, (1 ≤ j ≤ n) such that ∩n

i=1, i 6=jNi ⊆ Nj and
all Pi distinct (1 ≤ i ≤ n), where Pi =

√
(Ni :R M).

By Proposition 2.7 (i), the intersection of any t-prime submodule which
the colon ideals of module into them are equal, is a t-prime submodule. So
it is clear that any t-prime decomposition can be changed to reduced one.

Example 3.2. By Lemma 2.1 (ii) in [8], 6Z has a t-prime decompostion.
Remark 3.3. (i) By Proposition 2.2(i) in [8], any t-prime submodule is a
primary submodule. Then any t-prime decomposition, is a primary decom-
position.

(ii) By Remark 3.1 in [8], N = 8Z
⊕

4Z is a primary submodule, which
is not a 2-prime submodule of Z-module Z

⊕
Z. Similarly, L = 4Z

⊕
8Z

is a primary submodule, which is not a 2-prime submodule. Therefore
N ∩ L is a primary decomposition of Z-module Z

⊕
Z, which is not a 2-

prime decomposition. (Note that in this example, ring is Noetherian and
module is finitely generated.)

(iii) By Proposition 2.2(iii) in [8], a t-prime submodule is an s- prime sub-
module, for any s ≥ t. Then any t-prime decomposition is an s- prime
decomposition, for any s ≥ t. But the converse is not true in general.
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Recall that a proper submodule N of M is called irreducible, if N can not
be expressed as an intersection of two submodules of M properly containing
N [2].
Theorem 3.4. Let M be a Noetherian R-module and N be an irreducible
submodule of M such that (N :R M) is a radical ideal. Then N is a t-prime
submodule.

Proof. Assume that there exists a ∈ R such that λa :
M

N
→ M

N
is not injective

and λta 6= 0. Since Kerλta ⊆ Kerλ2ta ⊆ · · · and M

N
is Noetherian, there exists

i such that Kerλtia = Kerλ
t(i+1)
a = · · · . Put ϕ = λtia . Then Kerϕ = Kerϕ2. It

is easy to see that Kerϕ∩Imϕ = (0). If Kerϕ = (0), then ϕ is injective and so
λa is injective too, which is a contradiction. If Imϕ = (0), then λati = λtia = 0

and so ati ∈ (N :R M). Hence at ∈
√

(N :R M) = (N :R M). Thus λta = 0,
which is a contradiction. Now put N1 = π−1(Kerϕ) and N2 = π−1(Imϕ),
where π : M → M

N
is the natural projection. Then N = N1 ∩N2, such that

N1 and N2 are submodules of M properly containig N , that is a contradiction
(as N is an irreducible submodule). Therefore N is a t-prime submodule. □

Recall that a prime ideal P is said to be associated with M , if P is the
annihilator of some non-zero element of M . The set Ass(M) denotes the set
of prime ideals associated to M .
Theorem 3.5. Let R be a Noetherian ring, M be a finitely generated
R-module, (0) = ∩n

i=1Ni be a reduced t-prime decomposition and
Pi =

√
(Ni :R M). Then Ass(M) = {P1, ..., Pn}.

Proof. Let P ∈ Ass(M). So there exists a non-zero x ∈ M such that
P = Ann(x). As x 6= 0, by rearranging the Ni, there exists j such that
x 6∈ ∪j

i=1Ni and x ∈ ∩n
i=j+1Ni. For any i and any a ∈ Pi, as Pi =

√
(Ni :R M),

there exists the smallest s ∈ N such that asM ⊆ Ni. So λa :
M

Ni
→ M

Ni
is

not injective. Hence as Ni is t-prime, by Theorem 2.25, λta = 0. It means
at ∈ (Ni :R M). As R is Noetherian, Pi is finitely generated and so there
exists ni ∈ N such that P ni

i ⊆ (Ni :R M). Thus
∏j

i=1 P
ni

i ⊆ (Ni :R M).
Then

∏j
i=1 P

ni

i x ⊆ ∩n
i=1Ni = (0). Therefore

∏j
i=1 P

ni

i ⊆ Ann(x) = P and
so there exists l ∈ N, (1 ≤ l ≤ j) such that Pl ⊆ P . Now assume that
a ∈ P . So ax = 0 and since x 6∈ Nl, λa :

M

Nl
→ M

Nl
is not injective. Hence
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as Nl is t-prime, by Theorem 2.25, λta = 0. It means at ∈ (Nl :R M). So
a ∈

√
(Nl :R M) = Pl. Thus P = Pl ∈ {P1, ..., Pn}. Now we show that for

any j, (1 ≤ j ≤ n), Pj ∈ Ass(M). As (0) = ∩n
i=1Ni is a reduced t-prime

decomposition, there exists x ∈ ∩n
i=1, i 6=jNi − Nj. On the other hand, as

R is Noetherian, there exists the smallest n ∈ N such that P n
j x ⊆ Nj and

P n−1
j x 6⊆ Nj. Let y ∈ P n−1

j x−Nj. Then Pjy ⊆ P n
j x ⊆ ∩n

i=1Ni = (0). Hence

Pj ⊆ Ann(y). If a ∈ Ann(y), then ay = 0 and since y 6∈ Nj, λa :
M

Nj
→ M

Nj

is not injective. Hence as Nj is t-prime, by Theorem 2.25, λta = 0. It means
at ∈ (Ni :R M). So a ∈

√
(Nj :R M) = Pj and thus Ann(y) ⊆ Pj. Therefore

Pj = Ann(y) ∈ Ass(M). □

Corollary 3.6. Let R be a Noetherian ring and M be a finitely gener-
ated R-module. If N = ∩n

i=1Ni is a reduced t-prime decomposition, then
Pi(=

√
(Ni :R M)) are uniquely determined by N .

Proof. By Corollary 2.16, (0) = ∩n
i=1

Ni

N
is a reduced t-prime decomposition

in M

N
. Therefore Ass(M

N
) = {P1, ..., Pn} is uniquely determined by N . □

Corollary 3.7. With assumption of Theorem 3.5, Ass(M) is a finite set and
M = 0 if and only if Ass(M) = ∅.

4. Examples
This section is devoted to examples. We provide several examples which is

illustrated throughout our results mentioned in previous sections.

Remark 4.1. If R = Z, M = Z⊕ Z and N = 8Z⊕ 4Z, then as√
(N :R M) = 2Z,

N is a primary submodule of M , but it is not a 2-prime submodule, as
2(4, 2) ∈ N , but 2 /∈ 2

√
(N :R M) and (4, 2) /∈ N .

Hence every primary decomposition is not a t-prime decomposition.

In the following examples we show that the condition Ker(f) ⊆ N in
Theorem 2.15(i) and the condition monomorphism in Theorem 2.15(ii), are
necessary.

Example 4.2. Consider the Z-epimorphism
ψ : Z −→ Z6; a 7−→ ā
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Clearly ψ(0) = 0̄ and Ker(ψ) = 6Z 6⊆ (0). ¯(0) is not a t-prime submodule of
Z6. Since 2 . 3 = 0 but 2t /∈ (0 :Z Z6) = 6Z.

Example 4.3. Consider the zero homomorphism
g : Q −→ Z;

clearly Ker(g) = Q. So g is not a monomorphism. By Example 3.6 in [8],
g−1(0) is not a t-prime submodule.

Example 4.4. (i) M = Z4 is a 2-secondary Z-module.
(ii) M = Z⊕ 3Z is not a 2-secondary Z-module (Consider φ2).
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آن ها تجزیه و t-اول زیرمدول های

ترکان٢ ادنان و مقدری١ جواد

ایران بندرعباس، هرمزگان، دانشگاه پایه، علوم دانشکده ریاضی، ١گروه

ترکیه بیته، بیته، هاکتپه دانشگاهی پردیس ریاضی، ٢گروه

R-مدول از N سره ی زیرمدول ،t ∈ N برای باشد. یکدار و جابجایی حلقه یک R کنید فرض
m ∈ N بگیریم نتیجه ،rm ∈ N از (m ∈ M و r ∈ R (برای اگر گوییم؛ t-اول زیرمدول را M
می آوریم. بدست را t-اول زیرمدول های از دیگری ویژگی های مقاله، این در ما .rt ∈ (N :R M) یا
زیرمدول های از گوناگونی خواص t-ثانویه، زیرمدول های مانند دیگر مفاهیم برخی کمک با همچنین،
خواهیم بیان را مدول یک از t-اول یافته) (کاهش تجزیه مفهوم پایان، در می آوریم. بدست را t-اول

می کنیم. ذکر نیز آمده بدست مفاهیم برای متعددی مثال های کرد.

اولیه. زیرمدول اول، زیرمدول t-اول، زیرمدول کلیدی: کلمات
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