The purpose of this article is to develop the notions of amenability for vector valued group algebras. We prove that L1(G, A) is approximately weakly amenable where A is a unital separable Banach algebra. We give necessary and sufficient conditions for the existence of a left invariant mean on L∞(G, A∗), LUC(G, A∗), WAP(G, A∗) and C0(G, A∗).
Ghaffari, A., & Javadi Syahkale, S. S. (2015). AMENABILITY OF VECTOR VALUED GROUP ALGEBRAS. Journal of Algebraic Systems, 3(2), 97-107. doi: 10.22044/jas.2015.610
MLA
Ali Ghaffari; Seyedeh Samaneh Javadi Syahkale. "AMENABILITY OF VECTOR VALUED GROUP ALGEBRAS", Journal of Algebraic Systems, 3, 2, 2015, 97-107. doi: 10.22044/jas.2015.610
HARVARD
Ghaffari, A., Javadi Syahkale, S. S. (2015). 'AMENABILITY OF VECTOR VALUED GROUP ALGEBRAS', Journal of Algebraic Systems, 3(2), pp. 97-107. doi: 10.22044/jas.2015.610
VANCOUVER
Ghaffari, A., Javadi Syahkale, S. S. AMENABILITY OF VECTOR VALUED GROUP ALGEBRAS. Journal of Algebraic Systems, 2015; 3(2): 97-107. doi: 10.22044/jas.2015.610