Let be a commutative Noetherian local ring and be a non-zero finitely generated -module. We show that if is almost Cohen-Macaulay and is perfect with finite projective dimension, then is an almost Cohen-Macaulay module. Also, we give some necessary and sufficient condition on to be an almost Cohen-Macaulay module, by using functors.
Mafi, A. and Tabejamaat, S. (2015). RESULTS ON ALMOST COHEN-MACAULAY MODULES. Journal of Algebraic Systems, 3(2), 147-150. doi: 10.22044/jas.2015.614
MLA
Mafi, A. , and Tabejamaat, S. . "RESULTS ON ALMOST COHEN-MACAULAY MODULES", Journal of Algebraic Systems, 3, 2, 2015, 147-150. doi: 10.22044/jas.2015.614
HARVARD
Mafi, A., Tabejamaat, S. (2015). 'RESULTS ON ALMOST COHEN-MACAULAY MODULES', Journal of Algebraic Systems, 3(2), pp. 147-150. doi: 10.22044/jas.2015.614
CHICAGO
A. Mafi and S. Tabejamaat, "RESULTS ON ALMOST COHEN-MACAULAY MODULES," Journal of Algebraic Systems, 3 2 (2015): 147-150, doi: 10.22044/jas.2015.614
VANCOUVER
Mafi, A., Tabejamaat, S. RESULTS ON ALMOST COHEN-MACAULAY MODULES. Journal of Algebraic Systems, 2015; 3(2): 147-150. doi: 10.22044/jas.2015.614