In this paper we introduce a new class of modules which is closely related to the class of Noetherian modules. Let $R$ be a commutative ring with identity and let $M$ be an $R$-module such that $Nil(M)$ is a divided prime submodule of $M$. $M$ is called a Nonnil-Noetherian $R$-module if every nonnil submodule of $M$ is finitely generated. We prove that many of the properties of Noetherian modules are also true for Nonnil-Noetherian modules.
Yousefian Darani, A. (2015). NONNIL-NOETHERIAN MODULES OVER COMMUTATIVE RINGS. Journal of Algebraic Systems, 3(2), 201-210. doi: 10.22044/jas.2015.618
MLA
A. Yousefian Darani. "NONNIL-NOETHERIAN MODULES OVER COMMUTATIVE RINGS", Journal of Algebraic Systems, 3, 2, 2015, 201-210. doi: 10.22044/jas.2015.618
HARVARD
Yousefian Darani, A. (2015). 'NONNIL-NOETHERIAN MODULES OVER COMMUTATIVE RINGS', Journal of Algebraic Systems, 3(2), pp. 201-210. doi: 10.22044/jas.2015.618
VANCOUVER
Yousefian Darani, A. NONNIL-NOETHERIAN MODULES OVER COMMUTATIVE RINGS. Journal of Algebraic Systems, 2015; 3(2): 201-210. doi: 10.22044/jas.2015.618