Let $R$ be a commutative Noetherian ring, $fa$ an ideal of $R$ and $mathcal{D}(R)$ denote the derived category of $R$-modules. For any homologically bounded complex $X$, we conjecture that $sup {bf L}Lambda^{fa}(X)leq$ mag$_RX$. We prove this in several cases. This generalize the main result of Hatamkhani and Divaani-Aazar cite{HD} for complexes.
Hatamkhani, M. (2015). ON THE VANISHING OF DERIVED LOCAL HOMOLOGY MODULES. Journal of Algebraic Systems, 3(2), 217-225. doi: 10.22044/jas.2015.620
MLA
M. Hatamkhani. "ON THE VANISHING OF DERIVED LOCAL HOMOLOGY MODULES", Journal of Algebraic Systems, 3, 2, 2015, 217-225. doi: 10.22044/jas.2015.620
HARVARD
Hatamkhani, M. (2015). 'ON THE VANISHING OF DERIVED LOCAL HOMOLOGY MODULES', Journal of Algebraic Systems, 3(2), pp. 217-225. doi: 10.22044/jas.2015.620
VANCOUVER
Hatamkhani, M. ON THE VANISHING OF DERIVED LOCAL HOMOLOGY MODULES. Journal of Algebraic Systems, 2015; 3(2): 217-225. doi: 10.22044/jas.2015.620