In the present paper, by considering the notion of MV-modules which is the structure that naturally correspond to lu-modules over lu-rings, we prove some results on prime A-ideals and state some conditions to obtain a prime A-ideal in MV-modules. Also, we state some conditions that an A-ideal is not prime and investigate conditions that $K\subseteq \bigcup _{i=1}^{n}K_{i}$ implies $K\subseteq K_{j}$, where $K,K_{1},\cdots ,K_{n}$ are A-ideals of A-module M and $1\leq j\leq n$.
Saidi Goraghani, S., & Borzooei, R. A. (2017). MOST RESULTS ON A-IDEALS IN MV -MODULES. Journal of Algebraic Systems, 5(1), 1-13. doi: 10.22044/jas.2017.994
MLA
S. Saidi Goraghani; R. A. Borzooei. "MOST RESULTS ON A-IDEALS IN MV -MODULES". Journal of Algebraic Systems, 5, 1, 2017, 1-13. doi: 10.22044/jas.2017.994
HARVARD
Saidi Goraghani, S., Borzooei, R. A. (2017). 'MOST RESULTS ON A-IDEALS IN MV -MODULES', Journal of Algebraic Systems, 5(1), pp. 1-13. doi: 10.22044/jas.2017.994
VANCOUVER
Saidi Goraghani, S., Borzooei, R. A. MOST RESULTS ON A-IDEALS IN MV -MODULES. Journal of Algebraic Systems, 2017; 5(1): 1-13. doi: 10.22044/jas.2017.994