Document Type : Technical Note


Department of Mathematics, Payame Noor University (PNU), P.O. Box 19395- 3697, Tehran, Iran.


In this paper, we investigate some properties of top formal local
cohomology FdimM=aM
a (M). Among other things, we determine AttR(FdimM=aM
a (M)),
in the case that FdimM=aM
a (M) is an artinian module. Also we show that FdimM=aM
a (M)
is artinian if and only if it is minimax..


1. M. Asgharzadeh and K. Divaani-Aazar, Finiteness properties of formal local cohomology modules and Cohen-Macaulayness, Comm. Algebra, 39 (2011), 1082–1103.
2. M. H. Bijan-Zadeh, Sh. Rezaei, Artinianness and attached primes of formal local cohomology modules, Algebra Colloq., 21(2) (2014), 307–316.
3. M. Brodmann and R. Y. Sharp, Local Cohomology: An Algebraic Introduction with Geometric Applications, Cambridge University Press, United Kingdom, 1998.
4. N. Bourbaki, Commtative Algebra, Addison-Wesley, 1972.
5. M. Eghbali, On Artinianness of formal local cohomology, colocalization and coassociated primes, Math. Scand., (1) 113 (2013), 5–19.
6. H. Matsumura, Commutative Ring Theory, Cambridge University Press, 1986.
7. Sh. Rezaei, Minimaxness and finiteness properties of formal local cohomology modules, Kodai Math. J., 38 (2015), 430–436.
8. Sh. Rezaei, Artinianness of formal local cohomology modules, Comment. Math. Univ. Carolin., 60(2) (2019), 177–185.
9. P. Schenzel, On formal local cohomology and connectedness, J. Algebra, 315(2) (2007), 894–923.
10. S. Yassemi, Coassociated primes, Comm. Algebra, 23 (1995), 1473–1498.
11. H. Zöschinger, Über koassoziierte Primideale, Math. Scand., 63 (1988), 196–211.
12. H. Zöschinger, Minimax modules, J. Algebra, 102 (1986), 1–32.