• Home
  • Browse
    • Current Issue
    • By Issue
    • By Author
    • By Subject
    • Author Index
    • Keyword Index
  • Journal Info
    • About Journal
    • Aims and Scope
    • Editorial Board
    • Editorial Staff
    • Publication Ethics
    • Indexing and Abstracting
    • Related Links
    • FAQ
    • Peer Review Process
    • News
  • Guide for Authors
  • Submit Manuscript
  • Reviewers
  • Contact Us
 
  • Login
  • Register
Home Articles List Article Information
  • Save Records
  • |
  • Printable Version
  • |
  • Recommend
  • |
  • How to cite Export to
    RIS EndNote BibTeX APA MLA Harvard Vancouver
  • |
  • Share Share
    CiteULike Mendeley Facebook Google LinkedIn Twitter Telegram
Journal of Algebraic Systems
Articles in Press
Current Issue
Journal Archive
Volume Volume 5 (2017-2018)
Volume Volume 4 (2016-2017)
Volume Volume 3 (2015-2016)
Volume Volume 2 (2014-2015)
Volume Volume 1 (2013-2014)
Issue Issue 2
Issue Issue 1
Hejazi, S. (2014). Classification of Lie Subalgebras up to an Inner Automorphism. Journal of Algebraic Systems, 1(2), 117-133. doi: 10.22044/jas.2014.231
Seyed Reza Hejazi. "Classification of Lie Subalgebras up to an Inner Automorphism". Journal of Algebraic Systems, 1, 2, 2014, 117-133. doi: 10.22044/jas.2014.231
Hejazi, S. (2014). 'Classification of Lie Subalgebras up to an Inner Automorphism', Journal of Algebraic Systems, 1(2), pp. 117-133. doi: 10.22044/jas.2014.231
Hejazi, S. Classification of Lie Subalgebras up to an Inner Automorphism. Journal of Algebraic Systems, 2014; 1(2): 117-133. doi: 10.22044/jas.2014.231

Classification of Lie Subalgebras up to an Inner Automorphism

Article 4, Volume 1, Issue 2, Winter and Spring 2014, Page 117-133  XML PDF (121 K)
Document Type: Research Note
DOI: 10.22044/jas.2014.231
Author
Seyed Reza Hejazi
University of Shahrood
Abstract
In this paper, a useful classification of all Lie subalgebras of a given Lie algebra
up to an inner automorphism is presented. This method can be regarded as an
important connection between differential geometry and algebra and has many applications in different fields of mathematics. After main results, we have applied this procedure for classifying the Lie subalgebras of some examples of Lie algebras.
Keywords
Lie algebra; vector fields; optimal system
Statistics
Article View: 1,846
PDF Download: 1,352
Home | Glossary | News | Aims and Scope | Sitemap
Top Top

web site stat


Creative Commons License
JAS is licensed under a Creative Commons Attribution 4.0 International License.

Journal Management System. Designed by sinaweb.