Document Type: Original Manuscript


Department of Pure Mathematics, Faculty of Mathematical Sciences, University of Kashan, P.O.Box 87317-51167, Kashan, I. R. Iran


Suppose $G$ is a finite group, $A$ and $B$ are conjugacy classes of $G$ and $eta(AB)$ denotes the number of conjugacy classes contained in $AB$. The set of all $eta(AB)$ such that $A, B$ run over conjugacy classes of $G$ is denoted by $eta(G)$.
The aim of this paper is to compute $eta(G)$, $G in { D_{2n}, T_{4n}, U_{6n}, V_{8n}, SD_{8n}}$ or $G$ is a decomposable group of order $2pq$, a group of order $4p$ or $p^3$, where $p$ and $q$ are primes.