In this paper, first we study the semi maximal filters in linear $BL$-algebras and we prove that any semi maximal filter is a primary filter. Then, we investigate the radical of semi maximal filters in $BL$-algebras. Moreover, we determine the relationship between this filters and other types of filters in $BL$-algebras and G\"{o} del algebra. Specially, we prove that in a G\"{o}del algebra, any fantastic filter is a semi maximal filter and any semi maximal filter is an (n-fold) positive implicative filter. Also, in a $BL$-algebra, any semi maximal and implicative filter is a positive implicative filter. Finally, we give an answer to the open problem in [S. Motamed, L. Torkzadeh, A. Borumand Saeid and N. Mohtashamnia, Radical of filters in BL-algebras, Math. Log. Quart. 57, No. 2, (2011), 166-179 ].
Paad, A., & Borzooei, R. A. (2019). ON SEMI MAXIMAL FILTERS IN BL-ALGEBRAS. Journal of Algebraic Systems, 6(2), 101-116. doi: 10.22044/jas.2018.6130.1305
MLA
Akbar Paad; R. A. Borzooei. "ON SEMI MAXIMAL FILTERS IN BL-ALGEBRAS", Journal of Algebraic Systems, 6, 2, 2019, 101-116. doi: 10.22044/jas.2018.6130.1305
HARVARD
Paad, A., Borzooei, R. A. (2019). 'ON SEMI MAXIMAL FILTERS IN BL-ALGEBRAS', Journal of Algebraic Systems, 6(2), pp. 101-116. doi: 10.22044/jas.2018.6130.1305
VANCOUVER
Paad, A., Borzooei, R. A. ON SEMI MAXIMAL FILTERS IN BL-ALGEBRAS. Journal of Algebraic Systems, 2019; 6(2): 101-116. doi: 10.22044/jas.2018.6130.1305