[1] T. Bemrose, P. G. Casazza, K. Grochenig, M. C. Lammers and R. G. Lynch, Weaving frames, Oper. Matrices, 10 (2016), 1093–1116.
[2] A. Bourouihiya, The tensor product of frames, Sampl. Theory Signal Image Process, 7 (2008), 65–76.
[3] P. G. Casazza, D. Freeman and R. G. Lynch, Weaving schauder frames, J. Approx. Theory, 211 (2016), 42–60.
[4] P. G. Casazza and J. Kovacevic, Uniform tight frames with erasures, Adv. Comput. Math., 18 (2003), 387–430.
[5] P. G. Casazza and R. G. Lynch, Weaving properties of Hilbert space frames, J. Proc. SampTA, (2015), 110–114.
[6] O. Christensen, An Introduction to Frames and Riesz Bases, Birkhauser, Boston, 2012.
[7] G. B. Folland, A Course in Abstract Harmonic Analysis, CRC Press, Florida,1995.
[8] A. Khosravi, Frames and bases in tensor product of Hilbert spaces, Intern. Math. J., 4 (2003), 527–537.
[9] J. Kovacevic, P. L. Dragotti and V. K. Goyal, Filter bank frame expansions with erasures, IEEE Trans. Inform. Theory, 48 (2002), 1439–1450.
[10] J. Leng, D. Han and T. Huang, Optimal dual frames for communication coding with probabilistic erasure, IEEE Trans. Signal Proc., 59 (2011), 5380–5389 .
[11] A. Leone, C. Distante, N. Ancano, K. C. persaud, E. Stella and P. Siciliano, A powerful method for feature extraction and compression of electronic noise response, Sensor Actuat. B-CHEM, 105 (2005), 378–392.
[12] L. K. Vashisht and Deepshikha, On continuous weaving frames, Adv. Pure Appl. Math., 8 (2017), 15–31.
[13] P. Zhao, C. Zhao and P. G. Casazza, Perturbation of regular sampling in shiftinvariant
spaces for frames, IEEE Trans. Inform. Theory, 52 (2006), 4643–4648.