Let (R,m) be a Noetherian local ring, M be a finitely generated R-module of dimension n and a be an ideal of R. In this paper, generalizing the main results of Dibaei and Jafari [3] and Rezaei [8], we will show that if T is a subset of AsshR M, then there exists an ideal a of R such that AttR Hna(M)=T. As an application, we give some relationships between top local cohomology modules and top formal local cohomology modules.
Nazari, A. R. and Rastgoo, F. (2021). TOP LOCAL COHOMOLOGY AND TOP FORMAL LOCAL COHOMOLOGY MODULES WITH SPECIFIED ATTACHED PRIMES. Journal of Algebraic Systems, 8(2), 155-164. doi: 10.22044/jas.2020.8830.1428
MLA
Nazari, A. R. , and Rastgoo, F. . "TOP LOCAL COHOMOLOGY AND TOP FORMAL LOCAL COHOMOLOGY MODULES WITH SPECIFIED ATTACHED PRIMES", Journal of Algebraic Systems, 8, 2, 2021, 155-164. doi: 10.22044/jas.2020.8830.1428
HARVARD
Nazari, A. R., Rastgoo, F. (2021). 'TOP LOCAL COHOMOLOGY AND TOP FORMAL LOCAL COHOMOLOGY MODULES WITH SPECIFIED ATTACHED PRIMES', Journal of Algebraic Systems, 8(2), pp. 155-164. doi: 10.22044/jas.2020.8830.1428
CHICAGO
A. R. Nazari and F. Rastgoo, "TOP LOCAL COHOMOLOGY AND TOP FORMAL LOCAL COHOMOLOGY MODULES WITH SPECIFIED ATTACHED PRIMES," Journal of Algebraic Systems, 8 2 (2021): 155-164, doi: 10.22044/jas.2020.8830.1428
VANCOUVER
Nazari, A. R., Rastgoo, F. TOP LOCAL COHOMOLOGY AND TOP FORMAL LOCAL COHOMOLOGY MODULES WITH SPECIFIED ATTACHED PRIMES. Journal of Algebraic Systems, 2021; 8(2): 155-164. doi: 10.22044/jas.2020.8830.1428