Let (R,m) be a Noetherian local ring, M be a finitely generated R-module of dimension n and a be an ideal of R. In this paper, generalizing the main results of Dibaei and Jafari [3] and Rezaei [8], we will show that if T is a subset of AsshR M, then there exists an ideal a of R such that AttR Hna(M)=T. As an application, we give some relationships between top local cohomology modules and top formal local cohomology modules.
Nazari, A. R., & Rastgoo, F. (2021). TOP LOCAL COHOMOLOGY AND TOP FORMAL LOCAL COHOMOLOGY MODULES WITH SPECIFIED ATTACHED PRIMES. Journal of Algebraic Systems, 8(2), 155-164. doi: 10.22044/jas.2020.8830.1428
MLA
A. R. Nazari; F. Rastgoo. "TOP LOCAL COHOMOLOGY AND TOP FORMAL LOCAL COHOMOLOGY MODULES WITH SPECIFIED ATTACHED PRIMES", Journal of Algebraic Systems, 8, 2, 2021, 155-164. doi: 10.22044/jas.2020.8830.1428
HARVARD
Nazari, A. R., Rastgoo, F. (2021). 'TOP LOCAL COHOMOLOGY AND TOP FORMAL LOCAL COHOMOLOGY MODULES WITH SPECIFIED ATTACHED PRIMES', Journal of Algebraic Systems, 8(2), pp. 155-164. doi: 10.22044/jas.2020.8830.1428
VANCOUVER
Nazari, A. R., Rastgoo, F. TOP LOCAL COHOMOLOGY AND TOP FORMAL LOCAL COHOMOLOGY MODULES WITH SPECIFIED ATTACHED PRIMES. Journal of Algebraic Systems, 2021; 8(2): 155-164. doi: 10.22044/jas.2020.8830.1428