1. R. Ameri, On categories of hypergroups and hypermodules, J. Discrete Math. Sci. Cryptography, 6(2-3) (2003), 121–132.
2. S. M. Anvariyeh, S. Mirvakili and B. Davvaz, -Relation on hypermodules and fundamental modules over commutative fundamental rings, Comm. Algebra, 36 (2008), 622–631.
3. S. M. Anvariyeh, S. Mirvakili and B. Davvaz, Transitivity of -relation on hypermodules, Iran. J. Sci. Technol. Trans. A Sci., 32(A3) (2008), 188–205.
4. H. Bordbar and I. Cristea, About the Normal Projectivity and Injectivity of Krasner Hypermodules, Axioms, 10(2) (2021), 83.
5. H. Bordbar, M. Novak and I. Cristea, A note on the support of a hypermodule, J. Algebra Appl., 19(1) (2020), Article ID: 2050019-1–2050019-19.
6. B. Davvaz and V. Leoreanu-Fotea, Hyperring Theory and Applications, Int. Acad. Press, USA, 2007.
7. F. Farzalipour, P. Ghiasvand, On graded hyperrings and graded hypermodules, ASTA, 7(2) (2020), 15–28.
8. N. Firouzkouhi, B. Davvaz, New fundamental relation and complete part of fuzzy hypermodules, J. Discret. Math. Sci. Cryptogr., (Published online) (2020).
9. V. L. Fotea, Fuzzy hypermodules, Comput. Math. Appl., 57 (2009), 466–475.
10. M. Hamidi, Fundamental Functor Based on Hypergroups and Groups, J. Interdiscip. Math., 3 (2018), 117–129.
11. N. Jafarzadeh, R. Ameri, On exact category of (m; n)-ary hypermodules, Categories Gen, Algebraic Struct. with Appl., 12(1) (2020), 69–88.
12. F. Marty, Sur une generalization de la notion de groupe, In 8th Congress Math. Scandenaves., Stockholm., (1934), 45–49.
13. Ch. G. Massouros, Free and cyclic hypermodules, Ann. Mat. Pura Appl., 150(1) (1988), 153–166.
14. S. Mirvakili, S. M. Anvariyeh and B. Davvaz, Construction of (M;N)- hypermodule over (R; S)-hyperring, Acta. Univ. Sapientiae. Matem., 11(1) (2019), 131–143.
15. S. Sh. Mousavi, Free hypermodules: a categorical approach, Comm. Algebra, 48 (2020), 3184–3203.
16. M. Norouzi, Normal subfuzzy (m, n)-hypermodules, J. Discret. Math. Sci. Cryptogr., 22(3) (2019), 433–451.
17. H. Shojaei, R. Ameri, Various Kinds of Quotient of a Canonical Hypergroup, Sigma J. Eng. Nat. Sci., 9 (1) (2018), 133–141.
18. J. M. Zhan, B. Davvaz, K. P. Shum, A New View on Fuzzy Hypermodules, Acta. Math. Appl. Sin., 23 (2007), 1345–1356.