Document Type : Original Manuscript
Authors
1 Department of Mathematics, Payame Noor University (PNU), P.O. Box 19395- 4697, Tehran, Iran.
2 School of Mathematics, Statistics and Computer Sciences, University of Tehran, P.O. Box 14155-6455, Tehran, Iran.
Abstract
In this paper, we construct the concept of general Krasner hyperring based on the ring structures and the left general Krasner hypermodule based on the module structures. This study introduces the trivial left general Krasner hypermodules and proves that the trivial left general Krasner hypermodules are different from left Krasner hypermodules. We show that for any given general Krasner hyperring $R$ and trivial left general Krasner hypermodules $A, B, {\bf_{R}h}$om$(A, B)$ is a left general Krasner hypermodule and ${\bf_{R}h}$om$(-, B)$, $ ({\bf_{R}h}$om$(A, -) )$ is an exact covariant functor (contravariant). Finally, we show that the category ${\bf_{R}GKH}$mod (left trivial general Krasner hypermodules and all (homomorphisms) is an abelian category and trivial left general Krasner hypermodules have a normal injective resolution.
Keywords
2. S. M. Anvariyeh, S. Mirvakili and B. Davvaz, -Relation on hypermodules and fundamental modules over commutative fundamental rings, Comm. Algebra, 36 (2008), 622–631.
3. S. M. Anvariyeh, S. Mirvakili and B. Davvaz, Transitivity of -relation on hypermodules, Iran. J. Sci. Technol. Trans. A Sci., 32(A3) (2008), 188–205.
4. H. Bordbar and I. Cristea, About the Normal Projectivity and Injectivity of Krasner Hypermodules, Axioms, 10(2) (2021), 83.
5. H. Bordbar, M. Novak and I. Cristea, A note on the support of a hypermodule, J. Algebra Appl., 19(1) (2020), Article ID: 2050019-1–2050019-19.
6. B. Davvaz and V. Leoreanu-Fotea, Hyperring Theory and Applications, Int. Acad. Press, USA, 2007.
7. F. Farzalipour, P. Ghiasvand, On graded hyperrings and graded hypermodules, ASTA, 7(2) (2020), 15–28.
8. N. Firouzkouhi, B. Davvaz, New fundamental relation and complete part of fuzzy hypermodules, J. Discret. Math. Sci. Cryptogr., (Published online) (2020).
9. V. L. Fotea, Fuzzy hypermodules, Comput. Math. Appl., 57 (2009), 466–475.
10. M. Hamidi, Fundamental Functor Based on Hypergroups and Groups, J. Interdiscip. Math., 3 (2018), 117–129.
11. N. Jafarzadeh, R. Ameri, On exact category of (m; n)-ary hypermodules, Categories Gen, Algebraic Struct. with Appl., 12(1) (2020), 69–88.
12. F. Marty, Sur une generalization de la notion de groupe, In 8th Congress Math. Scandenaves., Stockholm., (1934), 45–49.
13. Ch. G. Massouros, Free and cyclic hypermodules, Ann. Mat. Pura Appl., 150(1) (1988), 153–166.
15. S. Sh. Mousavi, Free hypermodules: a categorical approach, Comm. Algebra, 48 (2020), 3184–3203.
16. M. Norouzi, Normal subfuzzy (m, n)-hypermodules, J. Discret. Math. Sci. Cryptogr., 22(3) (2019), 433–451.
17. H. Shojaei, R. Ameri, Various Kinds of Quotient of a Canonical Hypergroup, Sigma J. Eng. Nat. Sci., 9 (1) (2018), 133–141.
18. J. M. Zhan, B. Davvaz, K. P. Shum, A New View on Fuzzy Hypermodules, Acta. Math. Appl. Sin., 23 (2007), 1345–1356.