NORMAL INJECTIVE RESOLUTION OF GENERAL KRASNER HYPERMODULES

Document Type : Original Manuscript

Authors

1 Department of Mathematics, Payame Noor University (PNU), P.O. Box 19395- 4697, Tehran, Iran.

2 School of Mathematics, Statistics and Computer Sciences, University of Tehran, P.O. Box 14155-6455, Tehran, Iran.

Abstract

In this paper, we construct the concept of general  Krasner  hyperring based on the  ring  structures and the left general Krasner hypermodule based on the  module structures.  This study introduces  the  trivial left general Krasner hypermodules and  proves that the  trivial left general Krasner   hypermodules  are  different from left  Krasner   hypermodules. We show that for any given general  Krasner  hyperring $R$ and trivial left general Krasner   hypermodules $A, B, {\bf_{R}h}$om$(A, B)$ is a left general Krasner   hypermodule and  ${\bf_{R}h}$om$(-, B)$,     $ ({\bf_{R}h}$om$(A, -) )$ is an   exact covariant functor (contravariant). Finally, we  show that the category ${\bf_{R}GKH}$mod (left  trivial general Krasner hypermodules and all (homomorphisms) is an abelian  category and  trivial left general Krasner hypermodules have  a normal injective resolution.

Keywords


1. R. Ameri, On categories of hypergroups and hypermodules, J. Discrete Math. Sci. Cryptography, 6(2-3) (2003), 121–132.
2. S. M. Anvariyeh, S. Mirvakili and B. Davvaz, -Relation on hypermodules and fundamental modules over commutative fundamental rings, Comm. Algebra, 36 (2008), 622–631.
3. S. M. Anvariyeh, S. Mirvakili and B. Davvaz, Transitivity of -relation on hypermodules, Iran. J. Sci. Technol. Trans. A Sci., 32(A3) (2008), 188–205.
4. H. Bordbar and I. Cristea, About the Normal Projectivity and Injectivity of Krasner Hypermodules, Axioms, 10(2) (2021), 83.
5. H. Bordbar, M. Novak and I. Cristea, A note on the support of a hypermodule, J. Algebra Appl., 19(1) (2020), Article ID: 2050019-1–2050019-19.
6. B. Davvaz and V. Leoreanu-Fotea, Hyperring Theory and Applications, Int. Acad. Press, USA, 2007.
7. F. Farzalipour, P. Ghiasvand, On graded hyperrings and graded hypermodules, ASTA, 7(2) (2020), 15–28.
8. N. Firouzkouhi, B. Davvaz, New fundamental relation and complete part of fuzzy hypermodules, J. Discret. Math. Sci. Cryptogr., (Published online) (2020).
9. V. L. Fotea, Fuzzy hypermodules, Comput. Math. Appl., 57 (2009), 466–475.
10. M. Hamidi, Fundamental Functor Based on Hypergroups and Groups, J. Interdiscip. Math., 3 (2018), 117–129.
11. N. Jafarzadeh, R. Ameri, On exact category of (m; n)-ary hypermodules, Categories Gen, Algebraic Struct. with Appl., 12(1) (2020), 69–88.
12. F. Marty, Sur une generalization de la notion de groupe, In 8th Congress Math. Scandenaves., Stockholm., (1934), 45–49.
13. Ch. G. Massouros, Free and cyclic hypermodules, Ann. Mat. Pura Appl., 150(1) (1988), 153–166.
14. S. Mirvakili, S. M. Anvariyeh and B. Davvaz, Construction of (M;N)- hypermodule over (R; S)-hyperring, Acta. Univ. Sapientiae. Matem., 11(1) (2019), 131–143.
15. S. Sh. Mousavi, Free hypermodules: a categorical approach, Comm. Algebra, 48 (2020), 3184–3203.
16. M. Norouzi, Normal subfuzzy (m, n)-hypermodules, J. Discret. Math. Sci. Cryptogr., 22(3) (2019), 433–451.
17. H. Shojaei, R. Ameri, Various Kinds of Quotient of a Canonical Hypergroup, Sigma J. Eng. Nat. Sci., 9 (1) (2018), 133–141.
18. J. M. Zhan, B. Davvaz, K. P. Shum, A New View on Fuzzy Hypermodules, Acta. Math. Appl. Sin., 23 (2007), 1345–1356.