1. K. S. Ashish, A Survey of rings generated by units, Ann. Fac. Sci. Toulouse Math., 19 (2010), 203–213.
2. N. Ashrafi, N. Pouyan, The unit sum number of baer rings, Bull. Iran. Math. Soc., 42 (2016), 427–434.
3. N. Ashrafi, N. Pouyan, On twin-good rings, Iran. J. Math. Sci. Inform., 12 (2017), 119–129.
4. N. Ashrafi, N. Pouyan, The unit sum number of discrete modules, Bull. Iran. Math. Soc., 37 (2011), 243–249.
5. W. Brandal, Commutative rings whose finitely generated modules decompose, Lecture Notes in Mathematics, 723, Springer, NewYork, 1979.
6. S. Khurana, D. Khurana, P. P. Nielsen, Sums of units in self-injective ring, J. Algebra Appl., 13(7) (2014), Article ID: 1450020, 7 pp.
7. W. M. McGovern, Neat rings, J. Pure Appl. Algebra, 205 (2006), 243–265.
8. W. K. Nicholson, Lifting idempotent and exchange rings, Trans. Amer. Math. Soc., 229 (1977), 269–278.
9. W. K. Nicholson, Local group rings, Canad. Math. Bull., 15 (1972), 137–138.
10. W. K. Nicholson, Y. Zhou, Rings in which elements are uniquely the sum of an idempotent and a unit, Glasg. Math. J., 46 (2004), 227–236.
11. P. Vamos, 2-Good rings, The Quart. J. Math., 56 (2005), 417–430.
12. D. Zelinsky, Every linear transformation is sum of nonsingular ones, Proc. Amer. Math. Soc., 5 (1954), 627–630.
13. D. Zelinsky, Linearly compact modules and rings, Amer. J. Math., 75 (1953), 79–90.