STRUCTURE OF ZERO-DIVISOR GRAPHS ASSOCIATED TO RING OF INTEGER MODULO n

Document Type : Original Manuscript

Authors

Department of Mathematics, University of Kashmir, Srinagar, India.

Abstract

For a commutative ring $R$ with identity $1\neq 0$, let $Z^{*}(R)=Z(R)\setminus \lbrace 0\rbrace$ be the set of non-zero zero-divisors of $R$, where $Z(R)$ is the set of all zero-divisors of $R$. The zero-divisor graph of $R$, denoted by $\Gamma(R)$, is a simple graph whose vertex set is $Z^{*}(R)=Z(R)\setminus \{0\}$ and two vertices of $ Z^*(R)$ are adjacent if and only if their product is $ 0 $. In this article, we find the structure of the zero-divisor graphs $ \Gamma(\mathbb{Z}_{n}) $, for $n=p^{N_1}q^{N_2}r$, where $2<p<q<r$ are primes and $N_1$ and $N_2$ are positive integers.

Keywords


 1. D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra, 217 (1999), 434–447.
2. D. F. Anderson and D. Weber, The zero-divisor graph of a commutative ring without identity, Int. Elect. J. Algebra, 223 (2018), 176–202.
3. I. Beck, Coloring of a commutative rings, J. Algebra, 116 (1988), 208–226.
4. S. Chattopadhyay, K. L. Patra and B. K. Sahoo, Laplacian eigenvalues of the zero-divisor graph of the ring Zn, Linear Algebra Appl., 584 (2020), 267–286.
5. D. M. Cvetković, P. Rowlison and S. Simić, An Introduction to Theory of Graph Spectra, Spectra of Graphs. Theory and Application, Lonndon Math. S. Student Text, 75. Cambridge University Press, Inc. UK, 2010. 
6. S. Pirzada, An Introduction to Graph Theory, Universities Press, Orient BlackSwan, Hyderabad, 2012.
7. S. Pirzada, M. Aijaz and M. Imran, On zero-divisor graphs of the ring Zn, Afrika Matematika, 31 (2020), 727–737.
8. S. Pirzada, Bilal A. Rather, M. Aijaz and T. A. Chishti, On distance signless Laplacian spectrum of graphs and spectrum of zero divisor graphs of Zn, Linear Multilinear Algebra (2020), https://doi.org/10.1080/03081087.2020.1838425.
9. S. Pirzada, Bilal A. Rather and T. A. Chishti, On distance Laplacian spectrum of zero divisor graphs of Zn, Carpathian Math. Publ., 13(1) (2021), 48–57.
10. S. Pirzada, Bilal A. Rather, Rezwan Ul Shaban and Merajuddin, On signless Laplacian spectrum of the zero divisor graph of the ring Zn, Korean J. Math., 29(1) (2021), 13–24.
11. S. Pirzada, Bilal A. Wani and A. Somasundaram, On the eigenvalues of zero divisor graph associated to finite commutative ring ZpM qN , AKCE Int. J. Graphs Comb., 18(1) (2021), 1–16.
12. Bilal A. Rather, S. Pirzada, T. A. Naikoo and Yilun Shang, On Laplacian eigenvalues of the zero-divisor graph associated to the ring of integers modulo n, Mathematics, 9 (2021), 482, https://doi.org/10.3390/math9050482.
13. M. Young, Adjacency matrices of zero-divisor graphs of integer modulo n, Involve, 8 (2015), 753–761.