THE STRUCTURE OF MODULE LIE DERIVATIONS ON TRIANGULAR BANACH ALGEBRAS

Document Type : Original Manuscript

Authors

Department of Mathematics, University of Birjand, P.O. Box 9717434765, Birjand, Iran.

Abstract

In this paper, we introduce the concept of  module Lie  derivations on Banach algebras and study  module Lie  derivations on unital triangular Banach algebras $ \mathcal{T}=\begin{bmatrix}A & M\\ &B\end{bmatrix}$ to its dual. Indeed, we prove that every module (linear) Lie derivation\linebreak $ \delta: \mathcal{T} \to \mathcal{T}^{\ast}$  can be decomposed as $ \delta = d + \tau $, where $ d: \mathcal{T} \to \mathcal{T}^{\ast} $ is a module (linear) derivation and $ \tau: \mathcal{T} \to Z_{\mathcal{T}}(\mathcal{T}^{\ast}) $  is a module (linear) map vanishing at commutators if and only if this happens for the corner algebras $A$ and $B$.

Keywords


 1. M. Amini, Module amenability for semigroup algebras, Semigroup Forum, 69 (2004), 243–254.
2. M. Amini and D. E. Bagha, Weak module amenability for semigroup algebras, Semigroup Forum, 71 (2005), 18–26.
3. W. Cheung, Lie derivations of triangular algebras, Linear Multilinear Algebra, 51(3) (2003), 299–310.
4. B. E. Forrest and L. W. Marcoux, Derivation of triangular Banach algebras, Indiana University Mathematics Society, 45 (1996), 441–462.
5. B. E. Forrest and L. W. Marcoux, Weak amenability of triangular Banach algebras, Trans. Amer. Math. Soc., 354 (2002), 1435–1452.
6. E. Nasrabadi, Weak module amenability of triangular Banach algebras II, Math. Slovaca, 69(2) (2019), 425–432.
7. A. Pourabbas and E. Nasrabadi, Weak module amenability of triangular Banach algebras, Math. Slovaca, 61 (2011), 949–958