ABSORBING PRIME MULTIPLICATION MODULES OVER A PULLBACK RING

Document Type : Original Manuscript

Authors

Department of Mathematics, Payame Noor University, P.O. Box 19395-3697, Tehran, Iran.

Abstract

‎T‎‎‎‎he main purpose of this article is to ‎present a‎ ‎new ‎approach ‎to ‎the‎ classification of all indecomposable absorbing ‎prime‎ multiplication modules with finite-dimensional top over pullback rings of two Dedekind ‎domains. First‎, ‎we give a complete description of the absorbing ‎prime ‎multiplication modules over a local Dedekind ‎domain‎. ‎‎‎In fact‎, ‎we extend the definition and results given in \cite{108} to a more general absorbing ‎prime‎ multiplication modules ‎case‎‎. ‎Next‎, ‎we‎ establish a connection between the absorbing ‎prime ‎multiplication modules and the pure-injective modules over such‎ ‎rings‎.

Keywords


 1. S. Ebrahimi Atani, Indecomposable weak multiplication modules over Dedekind domains, Demonstr. Math., 41 (2008), 33–43.
 
2. S. Ebrahimi Atani, On pure-injective modules over pullback rings, Comm. Algebra, 28 (2000), 4037–4069.
 
3. S. Ebrahimi Atani, On secondary modules over Dedekind domains, Southeast Asian Bull. Math., 25(25) (2001), 1–6.
 
4. S. Ebrahimi Atani, On secondary modules over pullback rings, Comm. Algebra, 30 (2002), 2675–2685.
 
5. R. Ebrahimi Atani and S. Ebrahimi Atani, Comultiplication modules over a pullback of Dedekind domains, Czechoslovak Math. J., 59 (2009), 1103–1114.
 
6. R. Ebrahimi Atani and S. Ebrahimi Atani, On primary multiplication modules over pullback rings, Algebra Discrete Math., 11(2) (2011), 1–17.
 
7. R. Ebrahimi Atani and S. Ebrahimi Atani, On semiprime multiplication modules over pullback rings, Comm. Algebra, 41 (2013), 776–791.
 
8. S. Ebrahimi Atani and F. Esmaeili Khalil Saraei, Indecomposable primarycomultiplication modules over a pullback of two Dedekind domains, Colloq. Math., 120(1) (2010), 23–42.
 
9. S. Ebrahimi Atani and F. Farzalipour, Weak multiplication modules over a pullback of Dedekind domains, Colloq. Math., 114 (2009), 99–112.
 
10. F. Farzalipour, On 2-absorbing multiplication modules over pullback rings, Indian J. Pure Appl. Math., 50(40) (2019), 1021–1038.
 
11. I. Kaplansky, Modules over Dedekind rings and valuation rings, Trans. Amer. Math. Soc., (1952), 327–340.
 
12. R. Kielpiniki, On Γ-pure-injective modules, Bull. Acad. Sci. Math., 15 (1967), 127–131.
 
13. L. S. Levy, Mixed modules over ZG, G, cyclic of prime order, and over related Dedekind pullbacks, J. Algebra, 71 (1981), 62–114.
 
14. L. S. Levy, Modules over pullbacks and subdirect sums, J. Algebra, 71 (1981), 50–61 .
 
 15. R. L. MacCasland and M. E. Moore and P. F. Smith, On the spectrum of a module over a commutative ring, Comm. Algebra, 25 (1997), 79–103.
 
16. M. Moore and S. J. Smith, Prime and radical submodules of modules over commutative rings, Comm. Algebra, 10 (2002), 5037–5064.
 
17. Sh. Payrovi and S. Babaei, On the 2-absorbing submodules, Iranian J. Math. Sci. and Inf., 10 (2015), 131–137.
 
18. M. Prest, Model Theory and Modules, Cambridge: London Mathematical Society, Cambridge University Press, 1988.
 
19. R. B. Warfield, Purity and algebraic compactness for modules, Pacific J. Math., 28 (1969), 699–719.
 
20. A. N. Wiseman, Projective modules over pullback rings, Math. Proc. Cambridge Philos. Soc., 97 (1985), 399–406.
 
21. A. Yassine, M. J. Nikmehr and R. Nikandish, On 1-Absorbing Prime Ideals of Commutative Rings, J. Algebra Appl., 20(10) (2021), Article ID: 2150175 .