1. C. Abdiog˘lu and E. Y. Celikel, The Armendariz graph of a ring, Discussiones Mathematicae, General Algebra and Applications, 38 (2018), 189–196.
2. D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra, 217(2) (1999), 434–447.
3. I. Beck, Coloring of commutative rings, J. Algebra, 116(1) (1988), 208–226.
4. G. F. Birkenmeier and J. K. Park, Triangular matrix representations of ring extensions, J. Algebra, 265 (2003), 457–477.
5. B. Bollobas, Modern Graph Theory, Grad. Text in Math., Vol. 184, SpringerVerlag, New York, 1998.
6. P. M. Cohn, Reversible rings, Bull. London Math. Soc., 31(6) (1999), 641–648.
7. E. Hashemi, McCoy rings relative to a monoid, Comm. Algebra, 38 (2010), ئ1075–1083.
8. E. Hashemi and A. Alhevaz, Undirected zero divisor graphs and unique product monoid rings, Algebra Colloq., 26(4) (2019), 665–676.
9. E. Hashemi and R. Amirjan, Zero-divisor graphs of Ore extensions over reversible rings. Canad. Math. Bull., 59(4) (2016), 794–805.
10. E. Hashemi, R. Amirjan and A. Alhevaz, On zero-divisor graphs of skew polynomial rings over non-commutative rings, J. Algebra Appl., 16(3) (2017) Article ID: 1750056, 14 pp.
11. C. Y. Hong, N. K. Kim, Y. Lee, and S. J. Ryu, Rings with property (A) and their extensions, J. Algebra, 315(2) (2007), 612–628.
12. Z. Liu, Armendariz ring relative to a monoid, Comm. Algebra, 33 (2005), 649– 661.
13. G. Marks, R. Mazurek and M. Ziembowski, A new class of unique product monoids with applications to ring theory, Semigroup Forum, 78 (2009), 210–225.
14. J. Okniski, Semigroup Algebra, New York: W. A. Benjamin, 1991.
15. D. S. Passman, The Algebraic structure of group rings, Wiley, New York, 1977.
16. S. P. Redmond, The zero-divisor graph of a non-commutative ring, Int. J. Commut. Rings, 1 (2002), 203–211