ON THE DOMINATION NUMBER OF THE SUM ANNIHILATING IDEAL GRAPH OF A COMMUTATIVE RING AND ON THE DOMINATION NUMBER OF ITS COMPLEMENT

Document Type : Research Note

Authors

1 Department of Mathematics, Saurashtra University, P.O. Box 360005, Rajkot, India.

2 Department of Mathematics, Government Polytechnic, P.O. Box 362263, Junagadh, India. .

Abstract

The rings considered in this article are commutative with identity which are not integral domains. Let R be a ring. The sum annihilating ideal graph of R is an undirected graph whose vertex set is the set of all non-zero annihilating ideals of R and distinct vertices I and J are adjacent if and only if their sum is an annihilating ideal. The aim of this article is to discuss some results on the domination number of the sum annihilating ideal graph of R and on the domination number of its complement.

Keywords


 1. A. Alilou and J. Amjadi, The sum-annihilating essential ideal graph of a commutative ring, Commun. comb. optim., 1(2) (2016), 117–135.
 
2. D. F. Anderson, M. C. Axtell and J. A. Stickles Jr., Zero-divisor graphs in commutative rings, In Commutative Algebra, Noetherian and non-Noetherian perspectives, M. Fontana, S. E. Kabbaj, B. Olberding and I. Swanson (Editors), Springer-Verlag, New York (2011), 23–46.
 
3. D. F. Anderson and A. Badawi, The total graph of a commutative ring, J. Algebra, 320(7) (2008), 2706–2719.
 
4. D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutativ ring, J. Algebra 217(2) (1999), 434–447.
 
5. M. F. Atiyah and I. G. Macdonald, Introduction to Commutative Algebra, Addison-Wesley, Massachusetts, 1969.
 
6. R. Balakrishnan and K. Ranganathan, A Textbook of Graph Theory, Universitext, Second Edition, Springer, 2012.
 
7. I. Beck, Coloring of commutative rings, J. Algebra, 116(1) (1988), 208–226.
 
8. M. Behboodi and Z. Rakeei, The annihilating-ideal graph of commutative rings I, J. Algebra Appl., 10(4) (2011), 727–739.
 
9. M. Behboodi and Z. Rakeei, The annihilating-ideal graph of commutative rings II, J. Algebra Appl., 10(4) (2011), 741–753.
 
10. R. Gilmer, Multiplicative Ideal Theory, Marcel Dekker, New York, 1972.
 
11. R. Gilmer and W. Heinzer, The Laskerian property, power series rings and Noetherian spectra, Proc. Amer. Math. Soc., 79(1) (1980), 13–16.
 
12. W. Heinzer and J. Ohm, Locally Noetherian commutative rings, Trans. Amer. Math. Soc., 158(2) (1971), 273–284.
 
13. W. Heinzer and J. Ohm, On the Noetherian-like rings of E.G. Evans, Proc. Amer. Math. Soc., 34(1) (1972), 73–74 .
 
 14. N. Jaffari Rad, S. Heider Jaffari and D. A. Mojdeh, On domination in zerodivisor graphs, Canad. Math. Bull., 56(2) (2013), 407–411.
 
15. R. Kala and S. Kavitha, Sum annihilating ideal graph of a commutative ring, Palest. J. Math., 5(2) (2016), 282–290.
 
16. I. Kaplansky, Commutative Rings, The University of Chicago Press, Chicago, 1974.
 
17. D. A. Mojdeh and A. M. Rahimi, Dominating sets of some graphs associated to commutative rings, Comm. Algebra, 40(9) (2012), 3389–3396.
 
18. R. Nikandish and H. R. Maimani, Dominating sets of the annihilating-ideal graphs, Electron. Notes Discrete Math., 45 (2014), 17–22.
 
19. S. Visweswaran and H. D. Patel, A graph associated with the set of all nonzero annihilating ideals of a commutative ring, Discrete Math. Algorithm Appl., 6(4) (2014), Article ID: 1450047, 22 pp.
 
20. S. Visweswaran and P. Sarman, On the complement of a graph associated with the set of all nonzero annihilating ideals of a commutative ring, Discrete Math. Algorithm Appl., 8(3) (2016), Article ID: 1650043, 22 pp.
 
21. S. Visweswaran and P. T. Lalchandani, The exact zero-divisor graph of a reduced ring, Indian J. Pure Appl. Math., 52(4) (2021), 1123–1144.