BORDERED GE-ALGEBRAS

Document Type : Original Manuscript

Authors

1 Department of Mathematics, GITAM(Deemed to be University), P.O. Box 502329, Telangana State, India

2 Department of Mathematics, Faculty of Arts and Sciences, Adıyaman University, P.O. Box 02040, Adıyaman, Turkey

3 Department of Mathematics Education, Gyeongsang National University, P.O. Box 52828, Jinju, Korea.

Abstract

The notions of (transitive, commutative, antisymmetric) bordered GE-algebras are introduced,
and their properties are investigated. Relations between a commutative bordered GE-algebra and an
antisymmetric bordered GE-algebra are considered, and also relations between a commutative bordered
GE-algebra and a transitive bordered GE-algebra are discussed. Relations between a bordered GE-algebra and a bounded Hilbert algebra are stated, and the conditions under which every bordered GE-algebra (resp., bounded Hilbert algebra) can be a bounded Hilbert algebra (resp., bordered GE-algebra) are found. The concept of duplex bordered GE-algebras is introduced, and its properties are investigated. Relations between an antisymmetric bordered GE-algebra and a duplex bordered GE-algebra are discussed, and the conditions under which an antisymmetric bordered GE-algebra can be a duplex GE-algebra are established. A characterization of a duplex bordered GE-algebra is provided. A new bordered GE-algebra called cross bordered GE-algebra which is wider than duplex bordered GE-algebra is introduced, and its properties are investigated. Relations between a duplex bordered GE-algebra and a cross bordered GE-algebra are considered.

Keywords


 1. R. K. Bandaru, A. Borumand Saeid and Y. B. Jun, Belligerent GE-filter in GE-algebras, J. Indones. Math. Soc., 28(1) (2022), 31–43.
2. R. K. Bandaru, A. B. Saeid and Y. B. Jun, On GE-algebras, Bull. Sect. Log., 50(1) (2021), 81–96.
3. A. Borumand Saeid, A. Rezaei, R. K. Bandaru and Y. B. Jun, Voluntary GEfilters and further results of GE-filters in GE-algebras, J. Algebr. Syst., 10(1) (2022), 31–47.
4. R. A. Borzooei and J. Shohani, On generalized Hilbert algebras, Ital. J. Pure Appl. Math., 29 (2012), 71–86.
5. D. Busneag, A note on deductive systems of a Hilbert algebra, Kobe J. Math., 2 (1985), 29–35.
6. I. Chajda and R. Halas, Congruences and idealas in Hilbert algebras, Kyungpook Math. J., 39 (1999), 429–432.
7. I. Chajda, R. Halas and Y. B. Jun, Annihilators and deductive systems in commutative Hilbert algebras, Comment. Math. Univ. Carolin., 43(3) (2002), 407–417.
8. A. Diego, Sur les algebres de Hilbert, Collection de Logique Mathematique, Edition Hermann, Serie A, XXI, 1966.
9. A.V. Figallo, G. Ramón and S. Saad, A note on the Hilbert algebras with infimum, Mat. Contemp., 24 (2003), 23–37.
10. Y. B. Jun, Commutative Hilbert algebras, Soochow J. Math., 22(4) (1996), 477–484.
11. Y. B. Jun and K. H. Kim, H-filters of Hilbert algebras, Sci. Math. Jpn., e-2005, 231–236.
12. A. Monteiro, Hilbert and Tarski Algebras, Lectures given at the Univ. Nac. del Sur, Bahía Blanca, Argentina, 1960. 
13. A. Monteiro, Sur les algèbres de Heyting simétriques, Portugaliae Math., 39 (1980), 1–237.
14. A. S. Nasab and A. B. Saeid, Semi maximal filter in Hilbert algebra, J. Intell. Fuzzy Syst., 30 (2016a), 7–15.
15. A. S. Nasab and A. B. Saeid, Stonean Hilbert algebra, J. Intell. Fuzzy Syst., 30 (2016b), 485–492.
16. A. S. Nasab and A. B. Saeid, Study of Hilbert algebras in point of filters, An. Stiint. Univ. Ovidius Constanta Ser. Mat., 24(2) (2016), 221–251.
17. A. Rezaei, R. K. Bandaru, A. Borumand Saeid and Y. B. Jun, Prominent GE-filters and GE-morphisms in GE-algebras, Afr. Mat., 32 (2021), 1121–1136.