DUAL RICKART (BEAR) MODULES AND PRERADICALS

Document Type : Original Manuscript

Authors

1 Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran

2 Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran.

Abstract

In this work, we introduce dual Rickart (Baer) modules via the con-
cept of preradicals. It is shown that W is  -d Rickart if and only if
W =  (W)  L such that  (W) is a dual Rickart module. We prove
that a module W is  -d Baer if and only if W is  -d Rickart and W
satis es strongly summand sum property for d.s. submodules of W
contained in  (W). Via  (RR), we characterize right  -d Baer rings.

Keywords


1. T. Amouzegar and A. R. Moniri Hamzekolaee, Lifting modules with respect to image of a fully invariant submodule, Novi Sad J. Math., 20(2) (2020), 41–50.
2. L. Bican, T. Kepka and P. Nemec, Rings, Modules and Preradicals, Lect. Notes Pure and App. Math., 75, Marcel Dekker, New York-Basel, 1982.
3. A. K. Boyle and K. R. Goodearl, Rings over which certain modules are injective, Pacific J. Math., 58(1) (1975), 43–53.
4. K. R. Goodearl, Von Neumann Regular Rings, Monographs and studies in mathematics, 1979.
5. D. Keskin and R. Tribak, On dual Baer modules, Glasgow Math. J., 52 (2010), 261–269.
6. G. Lee, S. T. Rizvi and C. S. Roman, Dual Rickart modules, Comm. Algebra, 39(11) (2011), 4036–4058.
7. A. V. Mikhalev and G. Pilz. The Concise Handbook of Algebra, Kluwer Academic Publishers, Dordrecht, 2002.
8. S. H. Mohamed and B. J. Müller, Continuous and Discrete Modules, London Math. Soc. Lecture Notes Series 147, Cambridge, University Press, 1990.
9. A. R. Moniri Hamzekolaee, A. Harmanci, Y. Talebi, and and B. Ungor, A new approach to H-supplemented modules via homomorphisms, Turkish J. Math., 42(4) (2018), 1941–1955. 
10. Y. Talebi, A. R. Moniri Hamzekolaee, A. Harmanci and B. Ungor, Rings for which every cosingular module is discrete, Hacet. J. Math. Stat., 49(5) (2020), 1635–1648.
11. Y. Talebi and N. Vanaja, The torsion theory cogenerated by M-small modules, Comm. Algebra, 30(3) (2002), 1449–1460.
12. R. Tribak, Y. Talebi, A. R. Moniri Hamzekolaee and S. Asgari, - supplemented modules relative to an ideal, Haccetepe J. Math. Stat., 45(1) (2016), 107–120.
13. R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach, Reading, 1991.