AN IDENTITY RELATED TO θ-CENTRALIZERS IN SEMIPRIME RINGS

Document Type : Original Manuscript

Author

Department of Mathematics, Ayatollah Borujerdi University, Borujerd, Iran.

Abstract

‎Let $R$ be a $ 2$-torsion-free semiprime ring and $\theta$ be an epimorphism of $R$‎. ‎In this paper‎, ‎under special hypotheses‎, we prove that if $T‎: ‎R\longrightarrow R$‎
‎is an additive mapping such that‎
‎$‎‎$‎
‎T(xyx)=θ(x)T(y)θ(x)‎,
‎$‎‎$‎
‎holds for all $x‎, ‎y\in R$‎, ‎then‎
‎$T$ is a $θ$-centralizer‎
either $R$ is unital‎ or $θ(Z(R))=Z(R)$.

Keywords


1. E. Albas, On τ-centralizers of semiprime rings, Sib. Math. J., 48(2) (2007), 191–196.
2. M. N. Daif and M. S. Tammam El-Sayiad, On centralizers of semiprime rings (II), St. Petersburg Math. J., 21(1) (2010), 43–52.
3. H. Gahramani, On centralizers of Banach algebras, Bull. Malays. Math. Sci. Soc., 38(1) (2015), 155–164.
4. J. Vukman, An identity related to centralizers in semiprime rings, Comment. Math. Univ. Carolin., 40 (1999), 447–456.
5. J. Vukman, Centralizers on semiprime rings, Comment. Math. Univ. Carolin., 42(2) (2001), 237–245.
6. B. Zalar, On centralizers of semiprime rings, Comment. Math. Univ. Carolin., 32(4) (1991), 609–614.