ON THE NILPOTENT DOT PRODUCT GRAPH OF A COMMUTATIVE RING

Document Type : Original Manuscript

Authors

Department of Mathematics, Aligarh Muslim University, Aligarh-202002, India.

Abstract

Let $\mathscr{B}$ be a commutative ring with $1\neq 0$, $1\leq m<\infty$ be an integer and $\mathcal{R}=\mathscr{B}\times \mathscr{B}\times \cdot \cdot \cdot \times \mathscr{B}$ ($m$ times). In this paper, we introduce two types of (undirected) graphs, total nilpotent dot product graph denoted by $\mathcal{T_{N}D(\mathcal{R})}$ and nilpotent dot product graph denoted by $\mathcal{Z_ND(\mathcal{R})}$, in which vertices are from $\mathcal{R}^\ast = \mathcal{R}\setminus \{(0,0,...,0)\}$ and $\mathcal{Z_{N}(\mathcal{R})}^*$ respectively, where $\mathcal{Z_{N}(\mathcal{R})}^{*}=\{w\in \mathcal{R}^*| wz\in \mathcal{N(R)}, \mbox{for some }z\in \mathcal{R}^*\} $. Two distinct vertices $w=(w_1,w_2,...,w_m)$ and $z=(z_1,z_2,...,z_m)$ are said to be adjacent if and only if $w\cdot z\in \mathcal{N}(\mathscr{B})$ (where $w\cdot z=w_1z_1+\cdots+w_mz_m$, denotes the normal dot product and $\mathcal{N}(\mathscr{B})$ is the set of nilpotent elements of $\mathscr{B}$). We study about connectedness, diameter and girth of the graphs $\mathcal{T_ND(R)}$ and $\mathcal{Z_ND(R)}$. Finally, we establish the relationship between $\mathcal{T_ND(R)}$, $\mathcal{Z_ND(R)}$, $\mathcal{TD(R)}$ and $\mathcal{ZD(R)}$.

Keywords


  1. S. Akbari and A. Mohammadian, On the zero-divisor graph of a commutative ring, J.

Algebra, 274(2) (2004), 847-855.

  1. S. Akbari and A. Mohammadian, Zero-divisor graph of a non-commutative rings, J. Al

gebra, 296(2) (2006), 462-479.

  1. D. F. Anderson, T. Asir, A. Badawi and T. Tamizh Chelvam, Graphs from rings, First

ed., Springer Nature Switzerland AG, 2021.

  1. D. F. Anderson and A. Badawi, The total graph of a commutative ring, J. Algebra, 320(7)

(2008), 2706–2719.

  1. D. F. Anderson, R. Levy and J. Shapirob, Zero-divisor graphs, von Neumann regular rings

and Boolean algebras, J. Pure Appl. Algebra, 180(3) (2003), 221–241.

  1. D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, J.

Algebra, 217 (1999), 434–447.

  1. D. D. Anderson and M. Naseer, Beck’s coloring of a commutative ring, J. Algebra, 159(2)

(1993), 500–514.

  1. M. F. Atiyah and I. G. Macdonald, Introduction to Commutative Algebra, Addison-Wesley

Publishing Company, Massachusetts, London, Ontario, 1969.

  1. A. Badawi, On the dot product graph of a commutative ring, Comm. Algebra, 43(1)

(2015), 43–50.

  1. I. Beck, Coloring of commutative rings, J. Algebra, 116(1) (1988), 208–226.
  2. P. W. Chen, A kind of graph structure of rings, Algebra Colloq., 10 (2003), 229–238.
  3. F. DeMeyer, T. McKenzia and K. Schneider, The zero-divisor graph of a commutative

semigroup, Semigroup Fourm, 65 (2002), 206–214.

  1. R. Kala and S. Kavitha, A typical graph structure of a ring, Transactions on Combina

torics, 4(2) (2015), 37–44.

  1. R. Kala and S. Kavitha, Nilpotent graph of genus one, Discrete Math. Algorithms Appl.,

6 (2014), Article ID: 1450037.

  1. J. D. LaGrange, Complemented zero divisor graphs and Boolean rings, J. Algebra, 315(2)

(2007), 600–611.