- M. Afkhami, M. D. G. Farrokhi and K. Khashyarmanesh, Planar, toroidal, and projective
commuting and noncommuting graphs, Comm. Algebra, 43 (2015), 2964–2970.
- A. R. Ashrafi, On finite groups with a given number of centralizers, Algebra Colloq., 7
(2000), 139–146.
- J. Battle, F. Harary, Y. Kodama, and J. W. T. Youngs, Additivity of the genus of a graph,
Bull. Amer. Math. Soc., 68 (1962), 565–568.
- S. M. Belcastro and G. J. Sherman, Counting centralizers in finite groups, Math. Mag.,
67 (1994), 366–374.
- A. Bouchet, Orientable and nonorientable genus of the complete bipartite graph, J. Com
bin. Theory Ser. B., 24 (1978), 24–33.
- R. Brauer and K. A. Fowler, On groups of even order, Ann. Math., 62 (1955), 565–583.
- A. K. Das and D. Nongsiang, On the genus of the commuting graphs of finite non-abelian
groups, Int. Electron. J. Algebra, 19 (2016), 91–109.
- P. Dutta, B. Bagchi and R. K. Nath, Various energies of commuting graphs of finite
nonabelian groups, Khayyam J. Math., 6 (2020), 27–45.
- J. Dutta and R. K. Nath, Finite groups whose commuting graphs are integral, Mat.
Vesnik., 69 (2017), 226–230.
- J. Dutta and R. K. Nath, Laplacian and signless Laplacian spectrum of commuting
graphs of finite groups, Khayyam J. Math., 4 (2018), 77–87.
- J. Dutta and R. K. Nath, Spectrum of commuting graphs of some classes of finite groups,
Matematika, 33 (2017), 87–95.
- P. Dutta and R. K. Nath, Various energies of commuting graphs of some super integral
groups, Indian J. Pure Appl. Math., 52 (2021), 1–10.
- W. N. T. Fasfous and R. K. Nath, Inequalities involving energy and Laplacian en
ergy of non-commuting graphs of finite groups, Indian J. Pure Appl. Math., (2023),
https://doi.org/10.1007/s13226-023-00519-7.
- W. N. T. Fasfous, R. Sharafdini and R. K. Nath, Common neighborhood spectrum of
commuting graphs of finite groups, Algebra Discrete Math., 32 (2021), 33–48.
- D. MacHale, How commutative can a non-commutative group be?, Math. Gaz., 58
(1974), 199–202.
- M. Mirzargar and A. R. Ashrafi, Some distance-based topological indices of a non
commuting graph, Hacet. J. Math. Stat., 41 (2012), 515–526.
- R. K. Nath, Commutativity degree of a class of finite groups and consequences, Bull.
Aust. Math. Soc., 88 (2013), 448–452.
- R. K. Nath, W. N. T. Fasfous, K. C. Das and Y. Shang, Common neighborhood energy
of commuting graphs of finite groups, Symmetry, 13 (2021), 1651 (12 pages).
- D. Nongsiang, Double-toroidal and triple-toroidal commuting graph, Hacet. J. Math.
Stat., 53 (2024), 735–747.
- D. J. Rusin, What is the probability that two elements of a finite group commute?,
Pacific J. Math., 82 (1979), 237–247, .
- R. Sharafdini, R. K. Nath and R. Darbandi, Energy of commuting graph of finite AC
groups, Proyecciones J. Math., 41 (2022), 263–273.
- A. T. White, Graphs, Groups and Surfaces, North-Holland Mathematics Studies, no. 8.,
American Elsevier Publishing Co., Inc., New York, 1973.