SHEFFER STROKE BE-ALGEBRAS BASED ON THE SOFT SET ENVIRONMENT

Document Type : Original Manuscript

Authors

1 Department of Mathematics Education, Gyeongsang National University, P.O. Box 52828, Jinju, Korea.

2 Department of Mathematics, Ege University, P.O. Box 35100, Izmir, Turkey.

3 Department of Pure Mathematics, Faculty of Mathematics and Computer, Shahid Bahonar University of Kerman, Kerman, Iran.

Abstract

In this paper, we handle the concept of Sheffer stroke BE-algebras within the framework of soft sets. We introduce the notion of Sheffer stroke BE-algebras based on the soft set environment, providing a novel perspective on their algebraic properties. These soft Sheffer stroke BE-algebras extend a flexible and adaptable approach to logical operations, allowing for the combination of fuzzy and crisp information. Furthermore, we reveal the concept of soft Sheffer stroke sub-BE-algebras and we investigate the properties of these structures. Our analysis put forward intriguing connections among soft sets, Sheffer stroke operations, and the underlying BE-algebraic structure. The results given in this paper contribute to the broader understanding of algebraic structures basis with Sheffer stroke operation in the context of soft sets and provide potential applications in fields such as decision-making, information fusion, and uncertain reasoning.

Keywords


 1. I. Chajda, R. Halaš and H. Länger, Operations and structures derived from non associative MV-algebras, Soft Computing, 23(12) (2019), 3935–3944.
 2. I. Chajda and M. Kolařík, Independence of axiom system of basic algebras, Soft Computing, 13(1) (2009), 41–43.
 3. C. C. Chang, Algebraic analysis of many valued logics, Trans. Amer. Math. Soc., 88 (1958), 467–490.
 4. D. Chen, E. C. C. Tsang, D. S. Yeung and X. Wang, The parameterization reduction of soft sets and its applications, Computers and Mathematics with Applications, 49(5-6)  (2005), 757–763.
 5. W. Dudek, Y. B. Jun and S. Zoran, On fuzzy ideals in BCC-algebras, Fuzzy Sets and Systems, 123(2) (2001), 251–258.
 6. F. Feng and Y. Li, Soft subsets and soft product operations, Inform. Sci., 232 (2013), 44–57.
 7. Y. B. Jun, Fuzzy positive implicative and fuzzy associative filters of lattice implication algebras, Fuzzy Sets and Systems, 121(2) (2001), 353–357.
 8. Y. B. Jun, Soft BCK/BCI-algebras, Computers and Mathematics with Applications, 56 (2008), 1408–1413.
 9. Y. B. Jun, S. S. Ahn and H. S. Kim, Fuzzy subinclines (ideals) of incline algebras, Fuzzy Sets and Systems, 123(2) (2001), 217–225.
 10. Y. B. Jun, S. S. Ahn and H. S. Kim, Quotient structures of some implicative algebras via fuzzy implicative filters, Fuzzy Sets and Systems, 121(2) (2001), 325–332.
 11. Y. B. Jun, M. A. Ozturk and S. Z. Song, On fuzzy h-ideals in hemirings, Inform. Sci., 162(3-4) (2004), 211–226.
 12. Y. B. Jun, E. H. Roh and H. S. Kim, On fuzzy B-algebras, Czechoslovak Math. J., 52(2) (2002), 375–384.
 13. Y. B. Jun and W. H. Shim, Fuzzy strong implicative hyper BCK-ideals of hyper BCK algebras, Inform. Sci., 170(2-4) (2005), 351–361.
 14. Y. B. Jun and X. L. Xin, Fuzzy prime ideals and invertible fuzzy ideals in BCK-algebras, Fuzzy sets and systems, 117(3) (2001), 471–476.
 15. Y. B. Jun and X. L. Xin, Involutory and invertible fuzzy BCK-algebras, Fuzzy Sets and Systems, 117(3) (2001), 463–469.
 16. Y. B. Jun, Y. Xu and X. H. Zhang, Fuzzy filters of MTL-algebras, Inform. Sci., 175(1-2) (2005), 120–138.
 17. T. Katican, T. Oner and A. Borumand Saeid, On Sheffer stroke BE-algebras, Discussiones Mathematicae. General Algebra and Applications, 42 (2022), 293–314.
 18. J. Łukasiewicz and A. Tarski, Investigations into the sentential calculus, In: Logic, Semantics, Metamathematics, (1956), 38–59.
 19. P. K. Maji, R. Biswas and A. R. Roy, Soft set theory, Computers and Mathematics with Applications, 45 (2003), 555–562.
 20. P. K. Maji, A. R. Roy and R. Biswas, An application of soft sets in a decision making problem, Computers and Mathematics with Applications, 44 (2002), 1077–1083.
 21. W. McCune, R. Veroff, B. Fitelson, K. Harris, A. Feist and L. Wos, Short single axioms for Boolean algebra, J. Automat. Reason., 29(1) (2002), 1–16.
 22. D. Molodtsov, Soft set theory-First results, Computers and Mathematics with Applica tions, 37 (1999), 19–31.
 23. T. Oner, T. Kalkan and A. Borumand Saeid, Class of Sheffer stroke BCK-algebras, Analele Ştiinţifice ale Universitǎţii Ovidius Constanţa, 30(1) (2022), 247–269.
 24. T. Oner, T. Katican and A. Borumand Saeid, On fuzzy Sheffer stroke BE-algebras, New Mathematics and Natural Computation, 21(1) (2025), 77–90.
 25. T. Oner and I. Senturk, The Sheffer stroke operation reducts of basic algebras, Open Math., 15(1) (2017), 926–935.
 26. I. Senturk, A view on state operators in Sheffer stroke basic algebras, Soft Computing,
 25 (2021), 11471–11484.
 27. H. M. Sheffer, A set of five independent postulates for Boolean algebras, Trans. Amer.
 Math. Soc., 14 (1913), 481–488.
 28. A. Tarski, Ein beitrag zur axiomatik der abelschen gruppen, Fund. Math., 30(1) (1938),
 253–256. 74
 29. L. Zadeh, Fuzzy sets, Information and Control, 8 (1965), 338–353.