GENERALIZATIONS OF RADICAL IDEALS IN NONCOMMUTATIVE RINGS

Document Type : Original Manuscript

Author

Department of Mathematics, Nelson Mandela University, Gqeberha, South Africa.

10.22044/jas.2024.12957.1709

Abstract

In this study, we present the generalization of the concept of radical-ideals in noncommutative rings with nonzero identity. Let R be a noncommutative ring with 1≠0 and S(R) be the set of all ideals of R. Let φ : S(R) →S(R)∪∅ be a function and let ρ be a special radical. A proper ideal I of R is said to be a φ -ρ ideal of R if whenever a,b∈R with aRb⊆I and aRb⊈φ(I) and a∉ρ(R) then b∈I. Many of the results on n-ideals, J-ideals and there generalizations like weakly n-ideals and weakly J-ideals will follow as special cases from results proved for φ -ρ ideals in this paper.

Keywords


 1. A. Abouhalaka and S. Findik, Almost prime ideals in noncommutative rings, Serdica bMath. J., 48 (2022), 235–246.
2. E. Y. Çelikel, On generalization of n-ideals, Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 12 (2019), 650–659.
3. E. Y. Çelikel and N. J. Groenewald, Generalizations of 2-absorbing principally right primary ideals in noncommutative rings, submitted.
4. B. J. Gardner and R. Wiegandt, Radical Theory of Rings, Marcel Dekker Inc, New York, 2004.
5. C. Gorton, H. E. Heatherly and R. P. Tucci, Generalized primary rings, Int. Electron. J. Algebra, 12 (2012), 116–132.
6. N. J. Groenewald, On 2-absorbing and weakly 2-absorbing principally right primary ideals, J. Algebra Relat. Topics, 9(2) (2021), 47–67.
7. N. J. Groenewald, On almost radical ideals of noncommutative rings, J. Algebra Relat. Topics, 12(2) (2025), 25–36
8. N. J. Groenewald, On radical ideals of noncommutative rings, J. Algebra Appl., 22(09) (2023), Article ID: 2350196.
9. N. J. Groenewald, On weakly radical ideals of noncommutative rings, J. Algebra Appl., 22(12) (2023), Article ID: 2330003.
10. H. A. Khashan and A. B. Bani-Ata, J-ideals of commutative rings, Int. Electron. J. Algebra, 29 (2021), 148–164.
11. H. A. Khashan and E. Y. Çelikel, Weakly J-ideals of commutative rings, Filomat, 36(2) (2022), 485–495.
12. T. Y. Lam, A First Course in Noncommutative Rings, second ed., Graduate Texts in Mathematics, vol. 131, Springer-Verlag, New York, 2001.
13. U. Tekir, S. Koc and K. H. Oral, n-Ideals of commutative rings, Filomat, 31(10) (2017), 2933–2941.
14. S. Veldsman, A Note on the Radicals of Idealizations, Southeast Asian Bull. Math., 32 (2008), 545–551.