A STUDY OF (α1,α2)-FUZZY SUBRINGS AND (α1,α2)-FUZZY IDEALS OF A RING

Document Type : Original Manuscript

Authors

Department of Engineering Sciences and Humanities, Vishwakarma Institute of Technology, P.O. Box 411037, Pune, India.

10.22044/jas.2024.13111.1721

Abstract

As an extension to Liu's definition of fuzzy subring and fuzzy ideal, a new notion of $(\alpha_{1}, \alpha_{2})$-fuzzy subring and $(\alpha_{1}, \alpha_{2})$-fuzzy ideal of a ring is introduced. We have provided examples and analyzed their properties. Additionally, we have defined $(\alpha_{1}, \alpha_{2})$-fuzzy coset of a $(\alpha_{1}, \alpha_{2})$-fuzzy ideal of a ring and studied some of its properties.

Keywords


 1. S. Abou-Zaid, On fuzzy ideals and fuzzy quotient rings of a ring, Fuzzy Sets and Systems, 59 (1993), 205–210.
 2. P. Khubchandani and J. Khubchandani, Fuzzy α-modularity in fuzzy α lattices, Journal of Hyperstructures, 12(1) (2023), 30–50.
 3. W. J. Liu, Fuzzy invariant subgroups and fuzzy ideals, Fuzzy Sets and Systems, 8 (1982), 133–139.
 4. J. N. Moderson and D. S. Malik, Fuzzy Commutative Algebra, World Scientific, River Edge, NJ, USA, 1998.
 5. S. Nimbhorkar and J. Khubchandani, L-Fuzzy hollow modules and L-fuzzy multiplication modules, Kragujevac J. Math., 48(3) (2024), 423–432.
 6. S. Nimbhorkar and J. Khubchandani, Fuzzy semi-essential submodules and fuzzy semi closed submodules, TWMS J. App. and Eng. Math., 13(2) (2023), 568–575.
 7. S. Nimbhorkar and J. Khubchandani, (a,b)-Fuzzy subrings and (a,b)-fuzzy ideals of a ring, Journal of Hyperstructures, 9(2) (2020), 96–114.
 8. S. Nimbhorkar and J. Khubchandani, Fuzzy weakly irreducible ideals of a ring, Journal of Hyperstructures, 10(2) (2021), 118–128.
 9. A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl., 35 (1971), 512–517.
 10. P. K. Sharma, α-Fuzzy subgroups, International Journal of Fuzzy Mathematics and Systems, 3(1) (2013), 47–59.
 11. L. Zadeh, Fuzzy sets, Information and Control, 8 (1965), 338–353.