REMARKS ON GENERALIZED DERIVATIONS IN ∗−PRIME RINGS

Document Type : Original Manuscript

Author

Department of Mathematics, IBB University, IBB, Yemen.

10.22044/jas.2024.13252.1732

Abstract

Let (R, ∗) be a ∗−prime ring with characteristic different from two, and L ̸= 0
be a square closed ∗−Lie ideal of R. An additive mapping F : R −→ R is called
a generalized derivation on R if there exists a derivation d : R −→ R such that
F(xy) = F(x)y + xd(y) for all x, y ∈ R. In the present paper, we shall show that
when L satisfies any of several identities in F, then L is central.

Keywords


 1. M. K. Abu Nawas and R. M. Al-Omary, On ideals and commutativity of prime rings with generalized derivations, Eur. J. Pure Appl. Math., 11(1) (2018), 79–89.
2. R. M. Al-Omary, Commutativity of prime rings with generalized (α, β)-reverse derivation satisfying certain identities, Bull. Transilv. Univ. Bras. III: Math. Compu. Scie., 64(2) (2022), 1–12.
3. R. M. Al-Omary and S. K. Nauman, Generalized derivations on prime rings satisfyingm certain identities, Commun. Korean Math. Soc., 36(2) (2021), 229–238.
4. M. Ashraf and S. M. Aslam, On certain differential identities in prime rings with involution, Miskolc Math. Notes, 16(1)(2015), 33–44.
5. M. Ashraf and A. Khan, Commutativity of ∗-prime rings with generalized derivations, Rend. Semin. Mat. Univ. Padova., 125(1) (2011), 71–79.
6. H. E. Bell and N. Rehman, Generalized derivations with commutativity and anticommutativity conditions, Math. J. Okayama Univ., 49 (2007), 139–147.
7. K. Emine and N. Rehman, Notes on generalized derivations of ∗-prime rings, Miskolc Math. Notes, 15(1) (2014), 117–123.
8. I. N. Herstein, Topics in ring theory, Chicago: Chicago Univ. Press, 1969.
9. M. R. Khan, D. Arora and M. A. Khan, σ-ideals and generalized derivation in σ-prime rings, Bol. Soc. Paran. Mat., 31(2) (2012), 113–119.
10. J. Mayne, Ideals and centralizing mappings in prime rings, Proc. Am. Math. Soc., 86(2) (1982), 211–212.
11. S. K. Nauman, N. Rehman and R. M. Al-Omary, Lie ideals, Morita context and generalized (α, β)-derivations, Acta Math. Sci., 33B(4) (2013), 1059–1070.
12. L. Oukhtite and S. Salhi, On generalized derivation of σ-prime rings, Afr. Diaspora. J. Math., 5(1) (2007), 21–25.
13. L. Oukhtite, S. Salhi and L. Taoufiq, Commutativity conditions on derivations and Lie ideals in σ-prime rings, Beitrage Algebra Geom., 51(1) (2010), 275–282.
14. E. Posnerff Derivations in prime rings, Proc. Am. Math. Soc., 8(6) (1957), 1093–1100.
15. N. Rehman and R. M. Al-Omary, On Commutativity of 2-torsion free ∗-prime rings with generalized derivations, Mathematica, 53(2) (2011), 177–180.
16. N. Rehman, R. M. Al-Omary and A. Z. Ansari, On Lie ideals of ∗-prime rings with generalized derivations, Bol. Soc. Mat. Mex., 21(1) (2015), 19–26.
17. N. Rehman and O. Golbasi, Notes on (α, β)-generalized derivations of ∗-prime rings, Palest. J. Math., 5(2) (2016), 258–269.