ON SPECTRA OF HERMITIAN RANDIĆ MATRIX OF SECOND KIND

Document Type : Original Manuscript

Authors

1 Department of Mathematics DIbrugarh University, India

2 Department of Mathematics Indian Institute of Technology Guwahati

3 Research Scholar Dept of Mathematics Dibrugarh University

10.22044/jas.2024.13993.1787

Abstract

Let $X$ be a mixed graph and $\omega=\frac{1+\i \sqrt{3}}{2}$. We write $i\rightarrow j$, if there is an oriented edge from a vertex $v_i$ to another vertex $v_j$, and $i\sim j$ for an un-oriented edge between the vertices $v_i$ and $v_j$. The degree of a vertex $v_i$ is denoted by $d_i$. We propose the Hermitian Randi'c matrix of second kind $R^\omega(X)\coloneqq(R^\omega_{ij})$, where $R^\omega_{ij}=\frac{1}{\sqrt{d_id_j}}$ if $i \sim j$, $R^\omega_{ij}= \frac{\omega}{\sqrt{d_id_j}}$ and $R^\omega_{ji}= \frac{\overline{\omega}}{\sqrt{d_id_j}}$ if $i\rightarrow j$, and 0 otherwise. In this paper, we investigate some spectral features of this novel Hermitian matrix and study a few properties like positiveness, bipartiteness, edge-interlacing etc. We also compute the characteristic polynomial for this new matrix and obtain some upper and lower bounds for the eigenvalues and the energy of this matrix.

Keywords


 1. C. Adiga, B. R. Rakshith and W. So, On the mixed adjacency matrix of a mixed graph, Linear Algebra Appl., 495 (2016), 223–241.
 
2. F. Bauer, Normalized graph Laplacians for directed graphs, Linear Algebra Appl., 436 (2012), 4193–4222.
 
3. A. Bharali, A. Mahanta, I. J. Gogoi and A. Doley, Inverse sum Indeg index and ISI matrix of graphs, J. Discrete Math. Sci. Cryptogr., 23(6) (2020), 1315–1333.
 
4. N. Biggs, Algebraic Graph Theory, Second Edition, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1993.
 
5. B. Bollobás, P. Erdös and A Sarkar, Extremal graphs for weights, Discrete Math., 200 (1999), 5–19.
 
6. Ş. B. Bozkurt, A. D. Güngör, I. Gutman and A. S. Çevik, Randić matrix and Randić energy, MATCH Commun. Math. Comput. Chem., 64 (2010), 239–250.
 
7. M. Cavers, The normalized Laplacian matrix and general Randić index of graphs, PhD Thesis, University of Regina, 2010.
 
8. K. Guo and B. Mohar, Hermitian adjacency matrix of digraphs and mixed graphs, J. Graph Theory, 85 (2017), 217–248.
 
9. I. Gutman, The energy of a graph, Ber. Math.-Statist. Sekt. Forschungsz. Graz, 103 (1978), 1–22.
 
10. A. R. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, 2013.
 
11. S. Izumino, H. Mori and Y. Seo, On Ozeki’s inequality, J. lnequal. Appl., 2 (1998), 235–253.
 
12. M. R. Kannan, N. Kumar and S. Pragada, Normalized Laplacian for gain graphs, American Journal of Combinatorics, 1 (2020), 20–39.
 
13. X. Li and J. Wang, Randić energy and Randić eigenvalues, MATCH Commun. Math. Comput. Chem., 73 (2015), 73–80.
 
14. S. Li and Y. Yu, Hermitian adjacency matrix of the second kind for mixed graphs, Discrete Math., 345 (2022), Article ID: 112798.
 
15. J. Liu and X. Li, Hermitian-adjacency matrix and Hermitian energies of mixed graphs, Linear Algebra Appl., 466 (2015), 182–207.
 
16. Y. Lu, L. Wang and Q. Zhou, Hermitian-Randić matrix and Hermitian-Randić energy of mixed graphs, J. Inequal. Appl., 54 (2017), 1–14 .
 
 17. R. Marsli, Bounds for the smallest and the largest eigenvalues of hermitian matrices, Int. J. Algebra, 9(8) (2015), 379–394.
 
18. R. Mehatari, M. R. Kannan and A. Samanta, On the adjacency matrix of a complex unit gain graph, Linear Multilinear Algebra, 70(9) (2022), 1798–1813.
 
19. B. Mohar, A new kind of Hermitian matrix for digraphs, Linear Algebra Appl., 584 (2020), 343–352.
 
20. B. Mohar, Hermitian adjacency spectrum and switching equivalence of mixed graphs, Linear Algebra Appl., 489 (2015), 324–340.
 
21. N. Ozeki, On the estimation of the inequalities by the maximum, or minimum values (in Japanese), J. College Arts Sci. Chiba Univ., 5 (1968), 199–203.
 
22. N. Reff, Spectral properties of complex unit gain graphs, Linear Algebra Appl., 436(9) (2012), 3165–3176.
 
23. A. Samanta and M. R. Kannan, On the spectrum of complex unit gain graphs, (2023), arXiv: 1908.10668v2.
 
24. G. Yu, M. Dehmer, F. E. Streib and H. Jodlbauer, Hermitian normalized Laplacian matrix for directed networks, Inform. Sci., 495 (2019), 175–184.
 
25. G. Yu, X. Liu and H. Qu, Singularity of Hermitian (quasi-)Laplacian matrix of mixed graphs, Appl. Math Comput., 293 (2017), 287–292.
 
26. G. Yu and H. Qu, Hermitian Laplacian matrix and positive of mixed graphs, Appl. Math. Comput., 269 (2015), 70–76.
 
27. B. J. Yuan, Y. Wang, S. C. Gong and Y. Qiao, On mixed graphs whose Hermitian spectral radii are at most 2, Graphs Combin., 36(5) (2020), 1573–1584.
 
28. T. Zaslavsky, Biased graphs. I. Bias, balance, and gains, J. Combin. Theory Ser. B, 47(1) (1989), 32–52.