COMMUTATIVITY FOR THE WEAKLY RIGHT CANCELLATIVE SEMIRINGS: AN ENTIRELY NOVEL CATEGORY OF SEMIRINGS AND A WEAK CONDITION FOR COMMUTATIVITY RESEARCH

Document Type : Original Manuscript

Authors

1 Department of Mathematics, Faculty of Sciences, Moulay Ismaïl University, P.O. Box 11201, Meknes, Morocco

2 Laboratory of Innovant Technologies, High School of Technology, SMBA University, P.O. Box 2427, Fes, Morocco

10.22044/jas.2024.13745.1764

Abstract

The goal of this study is to provide an innovation for commutativity research that is less than the strong condition prime ring. This paper will describe weakly right cancellative semirings and examine how commutativity and generalized derivations apply to this class of semirings. A detailed explanation and classification of some of these generalized derivations are also included.

Keywords


 1. P. J. Allen, A fundamental theorem of homomorphisms for semirings, Proc. Amer. Math. Soc., 21(2) (1969), 412–416.
 
2. M. Ashraf, A. Ali and R. Rani, On generalized derivations of prime rings, Southeast Asian Bull. Math., 29(4) (2005), 669–675.
 
3. H. E. Bell and M. N. Daif, On derivations and commutativity in prime rings, Acta Math. Hungar., 66(4) (1995), 337–343.
 
4. H. E. Bell and M. N. Daif, Remarks on derivations on semiprime rings, Int. J. Math. Math. Sci., 15(1) (1992), 205–206.
 
5. R. Dedekind, Uber die Theorie der ganzen algebraischen Zahlen, Braunschweig, 1894.
 
6. V. De Filipis, A. Mamouni and L. Oukhtite, Weakly left cancellative semirings with derivations, Sa˜o Paulo J. Math. Sci., 14 (2020), 351–360.
 
7. J. S. Golan, Semirings and their applications, Dordrecht, NL: Kluwer Academic Publishers, 1999.
 
8. V. Gupta and J. N. Chaudhari, On commutativity of semirings, East-West J. Math., 8(1) (2006), 97–100.
 
9. L. Oukhtite and A. Mamouni, Generalized derivations centralizing on Jordan ideals of rings with involution, Turkish J. Math., 38(2) (2014), 225–232.
 
10. L. Oukhtite, A. Mamouni and M. Ashraf, Commutativity theorems for rings with differential identities on Jordan ideals, Comment. Math. Univ. Carolin., 54(4) (2013), 447–457. 
 
 11. M. A. Quadri, M. S. Khan and N. Rehman, Generalized derivations and commutativity of prime rings, Indian J. Pure Appl. Math., 34(9) (2003), 1393–1396.
 
12. S. K. Sardar, On derivation in semirings, Southeast Asian Bull. Math., 33(5) (2009), 917–928.
 
13. M. Shabir, A. Ali and S. Batool, A note on quasi-ideals in semirings, Southeast Asian Bull. Math., 27(5) (2004), 923–928.
 
14. H. S. Vandiver, Note on a simple type of algebra in which the cancellation law of addition does not hold, Bull. Amer. Math. Soc., 40 (1934), 914–920.
 
15. H. J. Weinert, Über Halbringe und Halbkörper I, Acta Math. Hung., 13(1-2) (1962), 365–378.
 
16. H. Yazarli and M. A. Öztürk, On the centroid of prime semirings, Turkish J. Math., 37(4) (2013), 577–584.