1. P. J. Allen, A fundamental theorem of homomorphisms for semirings, Proc. Amer. Math. Soc., 21(2) (1969), 412–416.
2. M. Ashraf, A. Ali and R. Rani, On generalized derivations of prime rings, Southeast Asian Bull. Math., 29(4) (2005), 669–675.
3. H. E. Bell and M. N. Daif, On derivations and commutativity in prime rings, Acta Math. Hungar., 66(4) (1995), 337–343.
4. H. E. Bell and M. N. Daif, Remarks on derivations on semiprime rings, Int. J. Math. Math. Sci., 15(1) (1992), 205–206.
5. R. Dedekind, Uber die Theorie der ganzen algebraischen Zahlen, Braunschweig, 1894.
6. V. De Filipis, A. Mamouni and L. Oukhtite, Weakly left cancellative semirings with derivations, Sa˜o Paulo J. Math. Sci., 14 (2020), 351–360.
7. J. S. Golan, Semirings and their applications, Dordrecht, NL: Kluwer Academic Publishers, 1999.
8. V. Gupta and J. N. Chaudhari, On commutativity of semirings, East-West J. Math., 8(1) (2006), 97–100.
9. L. Oukhtite and A. Mamouni, Generalized derivations centralizing on Jordan ideals of rings with involution, Turkish J. Math., 38(2) (2014), 225–232.
10. L. Oukhtite, A. Mamouni and M. Ashraf, Commutativity theorems for rings with differential identities on Jordan ideals, Comment. Math. Univ. Carolin., 54(4) (2013), 447–457.
11. M. A. Quadri, M. S. Khan and N. Rehman, Generalized derivations and commutativity of prime rings, Indian J. Pure Appl. Math., 34(9) (2003), 1393–1396.
12. S. K. Sardar, On derivation in semirings, Southeast Asian Bull. Math., 33(5) (2009), 917–928.
13. M. Shabir, A. Ali and S. Batool, A note on quasi-ideals in semirings, Southeast Asian Bull. Math., 27(5) (2004), 923–928.
14. H. S. Vandiver, Note on a simple type of algebra in which the cancellation law of addition does not hold, Bull. Amer. Math. Soc., 40 (1934), 914–920.
15. H. J. Weinert, Über Halbringe und Halbkörper I, Acta Math. Hung., 13(1-2) (1962), 365–378.
16. H. Yazarli and M. A. Öztürk, On the centroid of prime semirings, Turkish J. Math., 37(4) (2013), 577–584.