CAPABILITY OF LOW-DIMENSIONAL NILPOTENT 3-LIE ALGEBRAS

Document Type : Original Manuscript

Author

Department of Mathematics, Esfarayen University of Technology, Esfarayen, Iran.

10.22044/jas.2024.13818.1773

Abstract

In this paper, we characterize the capability of nilpotent n- Lie algebras of dimension
at most n + 3 over an arbitrary field when n > 2$ and the capability of 7 -
dimensional nilpotent 3 -Lie algebras over field $\mathcal {K} $ with $char \mathcal {K}
\ ne 2$.

Keywords


 1. F. Bagarello and F. G. Russo, A description of pseudo-bosons in terms of nilpotent Lie algebras, J. Geom. Phys., 125 (2018), 1–11.
 
2. F. Bagarello and F. G. Russo, On the presence of families of pseudo-bosons in nilpotent Lie algebras of arbitrary corank, J. Geom. Phys., 137 (2019), 124–131 
 
3. F. Bagarello and F. G. Russo, Realization of Lie algebras of high dimension via pseudobosonic operators, J. Lie Theory, 30 (2020), 925–938.
 
4. R. Bai, G. Song and Y. Zhang, On classification of n-Lie algebras, Front. Math. China, 6(4) (2011), 581–606.
 
5. R. Bai, X. Wang, W. Xiao and H. An, Structure of low dimensional n-Lie algebras over a field of characteristic 2, Linear Algebra Appl., 428 (2008), 1912–1920.
 
6. P. Batten, K. Moneyhun and E. Stitzinger, On characterizing nilpotent Lie algebras by their multipliers, Comm. Algebra, 24 (1996), 4319–4330.
 
7. H. Darabi, The algebraic classification of 7-dimensional nilpotent 3-Lie algebras, J. Algebra Relat. Topics, (2026), Article in Press.
 
8. H. Darabi and M. Imanparast, On classification of 9-dimensional nilpotent 3-ary algebras of class two, Bull. Iranian Math. Soc., 47 (2021), 929–937.
 
9. H. Darabi and F. Saeedi, On the Schur multiplier of n-Lie algebras, J. Lie Theory, 27 (2017), 271–281.
 
10. H. Darabi, F. Saeedi and M. Eshrati, A characterization of finite dimensional nilpotent Filippov algebras, J. Geom. Phys., 101 (2016), 100–107.
 
11. H. Darabi, F. Saeedi and M. Eshrati, Capable n-Lie algebras and the classification of nilpotent n-Lie algebras with s(A) = 3, J. Geom. Phys., 110 (2016), 25–29.
 
12. M. Eshrati, F. Saeedi and H. Darabi, On the multiplier of nilpotent n-Lie algebras, J. Algebra, 450 (2016), 162–172.
 
13. V. T. Filippov, n-Lie algebras, Sib. Math. Zh., 26(6) (1985), 126–140.
 
14. Z. Hoseini, F. Saeedi and H. Darabi, Characterization of capable nilpotent n-Lie algebras of class two by their Schur multipliers, Rend. Circ. Mat. Palermo. (2), 68 (2019), 541– 555.
 
15. Z. Hoseini, F. Saeedi and H. Darabi, On Classification of (n + 5)-dimensional nilpotent n-Lie algebras of class two, Bull. Iranian Math. Soc., 45(4) (2019), 939–949.
 
16. M. Jamshidi, F. Saeedi and H. Darabi, Classification of (n + 6)-dimensional nilpotent n-Lie algebras of class two with n 4, Arab J. Math. Sci., 27(2) (2021), 139–150.
 
17. S. M. Kasymov, Theory of n-Lie algebras, Algebra Logika, 26(3) (1987), 277–297.
 
18. I. Kaygorodov and Y. Volkov, Degenerations of Filippov algebras, J. Math. Phys., 61(2), (2020), Article ID: 021701.
 
19. K. Moneyhun, Isoclinisms in Lie algebras, Algebras Groups Geom., 11 (1994), 9–22.
 
20. J. C. Ndogmo and P. Winternitz, Solvable Lie algebras with abelian nilradical, J. Phys. A: Math. Gen., 27 (1994), 405–423.
 
21. P. Niroomand and F. G. Russo, A note on the Schur multiplier of nilpotent Lie algebra, Comm. Algebra, 39 (2011), 1293–1297.
 
22. A. P. Pozhidaev, On simple n-Lie algebras, Algebra Logic, 38(3) (1999), 181–192.
 
23. F. P. Shanbehbazari, P. Niroomand, F. G. Russo and A. Shamsaki, Capability of nilpotent Lie algebras of small dimension, Bull. Iranian Math. Soc., 48 (2022), 1153–1167.
 
24. L. Snobl and P. Winternitz, Classification and Identification of Lie Algebras, CRM Monograph Series, 33, American Mathematical Society, Providence, RI, 2014.