1. Y. A. Abramovich and C. D. Aliprantis, An invitation to operator theory, Graduate Studies in Mathematics, 50, American Mathematical Society, Providence, RI, 2002.
2. N. Assila, H. Labrigui, A. Touri et al., Integral operator frames on Hilbert C∗-modules, Ann. Univ. Ferrara, 70 (2024), 1271–1284.
3. P. G. Cazassa and O. Christensen, Perturbation of operators and applications to frame theory, J. Fourier Anal. Appl., 3 (1997), 543–557.
4. O. Christensen, An introduction to frames and riesz bases, Birkhauser, 2016.
5. I. Daubechies, Ten Lectures on Wavelets, SIAM, Philadelphia, 1992.
6. I. Daubechies, A. Grossmann and Y. Meyer, Painless nonorthogonal expansions, J. Math. Phys., 27 (1986), 1271–1283.
7. R. G. Douglas, On majorization, factorization and range inclusion of operators on Hilbert space, Proc. Amer. Math. Soc., 17(2) (1966), 413–415.
8. R. J. Duffn and A. C. Schaeffer, A class of nonharmonic fourier series, Trans. Amer. Math. Soc., 72 (1952), 341–366.
9. A. Fereydooni and A. Safapour, Pair frames, Results Math., 66 (2014), 247–263.
10. M. Firouzi Parizi, A. Alijani, and M. A. Dehghan, Biframes and some of their properties, J. Inequal. Appl., 2022 (2022), Article number: 104.
11. D. Gabor, Theory of communications, J. Inst. Electr. Eng., 93 (1946), 429–457.
12. L. Găvruţa, Frames for operators, Appl. Comput. Harmon. Anal., 32 (2012), 139–144.
13. M. Ghiati, M. Rossafi, M. Mouniane et al, Controlled continuous ∗-g-frames in Hilbert C∗-modules, J. Pseudo-Differ. Oper. Appl., 15 (2024), Article number: 2.
14. D. Han and D. Larson, Frames, Bases and Group Representations, Memoirs of the American Mathematical Society, Vol. 147, No. 697, American Mathematical Society, Providence, RI, 2000.
15. B. V. Limaye, Functional analysis, New Age International Ltd., New Delhi, Second Edition, 1996.
16. H. Massit, M. Rossafi and C. Park, Some relations between continuous generalized frames, Afr. Mat., 35 (2024), Article number: 12 .
17. A. Rahimi and A. Fereydooni, Controlled g-frames and their g-multipliers in Hilbert spaces, An. Sţ. Univ. Ovidius Constanţa, 21(2) (2013), 223–236.
18. S. M. Ramezani, Bi‑g‑frame and characterizations of bi‑g‑frame and Riesz basis, (2023), arXiv:2308.02147.
19. M. Rossafi, M. Ghiati, M. Mouniane et al., Continuous frame in Hilbert C∗-modules, J. Anal., 31 (2023), 2531–2561.
20. M. Rossafi and S. Kabbaj, Generalized frames for B(H, K), Iran. J. Math. Sci. Inform., 17(1) (2022), 1–9.
21. M. Rossafi, F. D. Nhari, C. Park et al., Continuous g-frames with C∗-valued bounds and their properties, Complex Anal. Oper. Theory, 16 (2022), Article number: 44.
22. W. Sun, g-Frames and g-Riesz bases, J. Math. Anal. Appl., 322(1) (2006), 437–452.
23. X. C. Xiao, Y. C. Zhu, Z. B. Shu and M. L. Ding, g-Frames with bounded linear operators, Rocky Mountain J. Math., 45(2) (2015), 675– 693.