We introduce a generalization of the notion of depth of an ideal on a module by applying the concept of local cohomology modules with respect to a pair of ideals. We also introduce the concept of $(I,J)$-Cohen--Macaulay modules as a generalization of concept of Cohen--Macaulay modules. These kind of modules are different from Cohen--Macaulay modules, as an example shows. Also an artinian result for such modules is given.
Aghapournahr, M., Ahmadi-amoli, K., & Sadeghi, M. (2015). THE CONCEPT OF (I; J)-COHEN MACAULAY MODULES. Journal of Algebraic Systems, 3(1), 1-10. doi: 10.22044/jas.2015.482
MLA
M. Aghapournahr; Kh. Ahmadi-amoli; M. Sadeghi. "THE CONCEPT OF (I; J)-COHEN MACAULAY MODULES", Journal of Algebraic Systems, 3, 1, 2015, 1-10. doi: 10.22044/jas.2015.482
HARVARD
Aghapournahr, M., Ahmadi-amoli, K., Sadeghi, M. (2015). 'THE CONCEPT OF (I; J)-COHEN MACAULAY MODULES', Journal of Algebraic Systems, 3(1), pp. 1-10. doi: 10.22044/jas.2015.482
VANCOUVER
Aghapournahr, M., Ahmadi-amoli, K., Sadeghi, M. THE CONCEPT OF (I; J)-COHEN MACAULAY MODULES. Journal of Algebraic Systems, 2015; 3(1): 1-10. doi: 10.22044/jas.2015.482