The rank-k numerical range has a close connection to the construction of quantum error correction code for a noisy quantum channel. For noisy quantum channel, a quantum error correcting code of dimension k exists if and only if the associated joint rank-k numerical range is non-empty. In this paper the notion of joint rank-k numerical range is generalized and some statements of [2011, Generalized numerical ranges and quantum error correction, J. Operator Theory, 66: 2, 335-351.] are extended.
Afshin, H. R., Bagheri, S., & Mehrjoofard, M. A. (2015). GENERALIZED JOINT HIGHER-RANK NUMERICAL RANGE. Journal of Algebraic Systems, 3(1), 31-38. doi: 10.22044/jas.2015.486
MLA
H. R. Afshin; S. Bagheri; M. A. Mehrjoofard. "GENERALIZED JOINT HIGHER-RANK NUMERICAL RANGE", Journal of Algebraic Systems, 3, 1, 2015, 31-38. doi: 10.22044/jas.2015.486
HARVARD
Afshin, H. R., Bagheri, S., Mehrjoofard, M. A. (2015). 'GENERALIZED JOINT HIGHER-RANK NUMERICAL RANGE', Journal of Algebraic Systems, 3(1), pp. 31-38. doi: 10.22044/jas.2015.486
VANCOUVER
Afshin, H. R., Bagheri, S., Mehrjoofard, M. A. GENERALIZED JOINT HIGHER-RANK NUMERICAL RANGE. Journal of Algebraic Systems, 2015; 3(1): 31-38. doi: 10.22044/jas.2015.486