Volume 10 (2022-2023)
Volume 9 (2021-2022)
Volume 8 (2020-2021)
Volume 7 (2019-2020)
Volume 6 (2018-2019)
Volume 5 (2017-2018)
Volume 4 (2016-2017)
Volume 3 (2015-2016)
Volume 2 (2014-2015)
Volume 1 (2013-2014)
PRIMARY ZARISKI TOPOLOGY ON THE PRIMARY SPECTRUM OF A MODULE

H. Bijari; K. Khashyarmanesh; H. Fazaeli Moghim

Volume 8, Issue 1 , September 2020, , Pages 53-68

http://dx.doi.org/10.22044/jas.2019.8320.1407

Abstract
  ‎‎Let $R$ be a commutative ring with identity and let $M$ be an $R$-module‎. ‎We define the primary spectrum of $M$‎, ‎denoted by $\mathcal{PS}(M)$‎, ‎to be the set of all primary submodules $Q$ of $M$ such that $(\operatorname{rad}Q:M)=\sqrt{(Q:M)}$‎. ‎In this ...  Read More

ZARISKI-LIKE SPACES OF CERTAIN MODULES

H. Fazaeli Moghim; F. Rashedi

Volume 1, Issue 2 , January 2014, , Pages 101-115

http://dx.doi.org/10.22044/jas.2014.230

Abstract
  Let $R$ be a commutative ring with identity and $M$ be a unitary $R$-module. The primary-like spectrum $Spec_L(M)$ is the collection of all primary-like submodules $Q$ such that $M/Q$ is a primeful $R$-module. Here, $M$ is defined to be RSP if $rad(Q)$ is a prime submodule for all $Q\in Spec_L(M)$. This ...  Read More