Document Type: Original Manuscript


Department of Mathematics, Yazd University, P.O. Box 89195 - 741, Yazd, Iran.


Abstract. A topological group H is called ω -narrow if for every
neighbourhood V of it’s identity element there exists a countable
set A such that V A = H = AV. A semigroup G is called a generalized group if for any x ∈ G there exists a unique element e(x) ∈ G
such that xe(x) = e(x)x = x and for every x ∈ G there exists
x − 1 ∈ G such that x − 1x = xx − 1 = e(x). Also let G be a topological space and the operation and inversion mapping are continuous,
then G is called a topological generalized group. If {e(x) | x ∈ G} is
countable and for any a ∈ G, {x ∈ G|e(x) = e(a)} is an ω-narrow
topological group, then G is called an ω-narrow topological generalized group. In this paper, ω-narrow and resolvable topological
generalized groups are introduced and studied