Generalized π-Baer *-rings

Document Type : Original Manuscript

Authors

1 Department of Mathematics, Dezful Branch, Islamic Azad University, Dezful, Iran.

2 Department of Computer Engineering, Shahed University, Tehran, Iran.

Abstract

‎A *-ring‎ ‎$R$ is called a generalized $\pi$-Baer *-ring‎, ‎if for any projection invariant left ideal $Y$ of $R$‎, ‎the right annihilator of $Y^n$‎ ‎is generated‎, ‎as a right ideal‎, ‎by a projection, ‎for some positive integer $n$‎, ‎depending on $Y$‎. ‎In this paper, ‎we‎ ‎study some properties of generalized $\pi$-Baer *-rings‎. ‎We show that this notion is well-behaved with respect to‎ ‎polynomial extensions, full matrix rings, and several classes of triangular matrix rings‎.‎ ‎We indicate interrelationships between the generalized $\pi$-Baer *-rings and related classes of rings such as‎ generalized ‎$\pi$-Baer rings‎, generalized ‎Baer *-rings‎, generalized quasi-Baer *-rings, and ‎$‎\pi$-Baer \s-rings.
‎We obtain algebraic examples which are generalized‎ $‎\pi$-Baer $ \ast $-rings but are not $‎\pi$-Baer *-rings‎. ‎We show that for pre-C*-algebras these two notions are equivalent‎.
‎We obtain classes of Banach *-algebras‎ ‎which are generalized‎ $‎\pi$-Baer *-rings but are not $‎\pi$-Baer *-rings‎. We finish the paper by showing that for a locally compact‎
‎abelian group $G$‎, ‎the group algebra $L^{1}(G)$ is a‎ ‎generalized $‎\pi$-Baer $*$-ring‎, ‎if and only if so is the group C*-algebra‎ ‎$C^{*}(G)$‎, ‎if and only if $G$ is finite‎.

Keywords


1. J. Abaffy, C. G. Broyden and E. Spedicato, A class of direct methods for linear systems, Numer. Math., 45 (1984), 361–376.
2. J. Abaffy and E. Spedicato, ABS Projection Algorithms: Mathematical Techniques for Linear and Nonlinear Equations, Ellis Horwood, Chichester, 1989.
3. M. Ahmadi, N. Golestani and A. Moussavi, Generalized quasi-Baer -rings and Banach -algebras, Comm. Algebra, 8(5) (2020), 2207–2247.
4. M. Ahmadi and A. Moussavi, Generalized Baer -rings, Sib. Math. J., 64 (2023), 767–786.
5. E. P. Armendariz, A note on extensions of Baer and p.p. rings, J. Aust. Math. Soc., 18 (1974), 470–473.
6. H. E. Bell, Near-Rings in which each element is a power of itself, Bull. Aust. Math. Soc., 2(3) (1970), 363–368.
7. S. K. Berberian, Baer -rings, Grundlehren Math. Wiss., vol. 195, Springer, Berlin, 1972.
8. G. F. Birkenmeier, N. J. Groenewald and H. E. Heatherly, Minimal and maximal ideals in rings with involution, Beiträge Algebra Geom., 38(2) (1997), 217–225.
9. G. F. Birkenmeier, H. E. Heatherly, J. Y. Kim and J. K. Park, Triangular matrix representations of ring extensions, J. Algebra, 230 (2000), 558–595.
10. G. F. Birkenmeier, Y. Kara and A. Tercan, π-Baer Rings, J. Algebra Appl., 16(11) (2018), 1–19.
11. G. F. Birkenmeier, J. Y. Kim and J. K. Park, Polynomial extensions of baer and quasi-Baer rings, J. Pure Appl. Algebra, 159(1) (2001), 25–42.
12. G. F. Birkenmeier, J. Y. Kim and J. K. Park, Principally quasi-Baer rings, Comm. Algebra, 29(2) (2001), 639–660.
13. G. F. Birkenmeier, J. Y. Kim and J. K. Park, Quasi-Baer ring extensions and biregular Rings, Bull. Aust. Math. Soc., 61 (2000), 39–52.
14. G. F. Birkenmeier, B. J. Müller and S. T. Rizvi, Modules in which every fully invariant submodule is essential in a direct summand, Comm. Algebra, 30 (2002), 1395–1415.
15. G. F. Birkenmeier and J. K. Park, Self-adjoint ideals in Baer -rings, Comm. Algebra, 28 (2000), 4259–4268.
16. G. F. Birkenmeier, J. K. Park and S. T. Rizvi, Extensions of Rings and Modules, Birkhäuser, New York, 2013. 
17. G. F. Birkenmeier, J. K. Park and S. T. Rizvi, Hulls of semiprime rings with applications to C*-algebras, J. Algebra, 322 (2009), 327–352.
18. B. Blackadar, Operator Algebras: Theory of C*-Algebras and von Neumann Algebras, Encyclopaedia of Mathematical Sciences, vol. 122, Springer, Berlin, 2006.
19. K. A. Brown, The singular ideals of group rings, Q. J. Math., 28 (1977), 41–60.
20. W. E. Clark, Twisted matrix units semigroup algebras, Duke Math. J., 34 (1997), 417–424.
21. J. Dixmier, C*-Algebras, North-Holland, Amsterdam, 1977.
22. G. B. Folland, A Course in Abstract Harmonic Analysis, CRC Press, Boca Raton, FL, 1995.
23. D. E. Handelman, Prüfer domains and Baer -rings, Arch. Math., 29 (1977), 241–251.
24. I. Kaplanski, Rings of operators, Benjamin, New York, 1968.
25. T. Y. Lam, Lectures on modules and rings, Berlin: Springer-Verlag, 1999.
26. T. K. Lee and Y. Zhou, Armendariz and reduced rings, Comm. Algebra, 32(6) (2004), 2287–2299.
27. A. Moussavi, H. H. S. Javadi and E. Hashemi, Generalized quasi-Baer rings, Comm. Algebra, 33 (2005), 2115–2129.
28. G. J. Murphy, C*-Algebras and Operator Theory, Academic Press, 1990.
29. W. Narkiewicz, Polynomial mappings, Lecture Notes in Mathematics, SpringerVerlag, Berlin, 1600, 1995.
30. A. Shahidikia, H. H. Seyyed Javadi and A. Moussavi, π-Baer -rings, Int. Electron. J. Algebra, 30 (2021), 231–242.
31. A. Shahidikia, H. H. Seyyed Javadi and A. Moussavi, Generalized π-Baer rings, Turk J. Math., 44 (2020), 2021–2040.